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REGULAR t-BALANCED CAYLEY MAPS ON SPLIT
METACYCLIC 2-GROUPS

HAmMiAO CHEN AND JINGRUI ZHANG

ABSTRACT. A regular t-balanced Cayley map on a group I is an embed-
ding of a Cayley graph on I' into a surface with certain special symmetric
properties. We completely classify regular ¢-balanced Cayley maps for a
class of split metacyclic 2-groups.

1. Introduction

Suppose I is a finite group and () is a generating set of ' such that w™! € Q
whenever w € €, and the identity 1 ¢ Q. The Cayley graph Cay(T',Q) is the
graph having the vertex set I' and the arc set I' x 2, where for n € ', w € €,
the arc from 7 to nw is denoted as (1, w).

A cyclic permutation p on {2 canonically induces a permutation on the arc
set via (n,w) — (1, p(w)), and this equips each vertex n with a “cyclic order”,
which means a cyclic permutation on the set of arcs emanating from 7. This
determines an embedding of Cay(T,2) into a closed oriented surface, which is
characterized by the property that each connected component of the comple-
ment of the Cayley graph is a disk. Such an embedding is called a Cayley map
and denoted by CM(T', Q, p). An isomorphism of Cayley maps CM(I', Q, p) —
CM(TV, Y, p') is by definition an isomorphism Cay(T', Q) — Cay(I", ') which
can be extended to an orientation-preserving homeomorphism between their
embedding surfaces.

A Cayley map is called regular if its automorphism group acts regularly on
the arc set, i.e., for any two arcs, there exists an automorphism sending one
arc to the other. It was shown in [10] that CM(T, , p) is regular if and only
if there exist a skew-morphism which is a bijective function ¢ : I' — T', and a
power function m: T — {1,...,#Q} (where #( is the cardinality of ), such

that ¢lo = p, ¢(1) = 1 and @(nu) = (7)™ (u) for all n, u € T.
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Let d = #£, and t be an integer with ¢ = 1 (mod d). A regular Cayley
map CM(T, Q, p) is called t-balanced if

(1.1) plw™) = (p'(w)) ™ for all w € €

in particular, it is called balanced if t =1 (mod d) and anti-balanced if t = —1
(mod d). It is the residue modulo d rather than ¢ itself, that plays a key role.
From now on we assume 0 < ¢t < d, and abbreviate “regular t-balanced Cayley
map” to “RBCM,”.

Recall some facts on RBCM; from [1] Proposition 1.2.

Proposition 1.1. (a) A Cayley map CM(T,Q, p) is an RBCM, if and only if
p can be extended to an automorphism of T.

(b) Suppose t > 1. A Cayley map CM(T,Q,p) is an RBCM; if and only
if p can be extended to a skew-morphism of T, w(w) =t for all w € Q and
w(n) € {1,t} for alln eT.

(c) When the conditions in (b) are satisfied, Ty := {n € T': w(n) = 1} is
a subgroup of index 2, consisting of elements which are products of an even
number of generators, o(I'y) =Ty, and ¢ := ¢|r, is an automorphism.

By (1.1), there is an involution ¢ on {1,...,d} withw; ' = w,;) and ¢(i+1) =
1(7) + ¢t (mod d) for all i. Let £ = (d), then ¢(i) = ¢ + ti (mod d), and the
condition (2 = id is equivalent to (¢ + 1)/ = 0 (mod d), which together with
t2 =1 (mod d) implies (t — 1,d) | 2¢.

Remark 1.2. Observe that (¢t — 1,d) | £ if and only if © contains an element of
order 2, so RBCM,’s of different type cannot be isomorphic. On the other hand,
according to Lemma 2.4 of [11], two RBCM,’s of the same type CM(T';,Q;, p;),
7 = 1,2 are isomorphic if and only if there exists an isomorphism o : I'y — I'y
such that o(Q1) = Qs and 00 p; = pyoo.

When CM(T, {w1,...,wq},p) has type I (resp. type II), by re-indexing the
w;’s if necessary, we may assume ¢ = (¢t — 1,d)/2 (resp. £ = (t — 1,d)).

So far, people have completely classified RBCM,’s for the following classes
of groups: dihedral groups (Kwak, Kwon and Feng [11], 2006), dicyclic groups
(Kwak and Oh [12], 2008), semi-dihedral groups (Oh [14], 2009), cyclic groups
(Kwon [13], 2013). In 2017 the first author [1] reduced the classification of
RBCM;’s on abelian groups to a problem about polynomial rings, and gave a
complete classification for RBCM,’s on abelian 2-groups. In 2018 Yuan, Wang
and Qu [15] classified RBCM; ’s for the so-called minimal nonabelian metacyclic
groups. For results on more general regular Cayley maps, see [2,4,6,7,9].

It is still challenging to study regular Cayley maps on nonabelian groups. We
propose a “reduction method”, through which known results about RBCM,’s
on simpler groups may be applicable. A key ingredient is the following obser-
vation.

Lemma 1.3. Let CM(T,, p) be an RBCM; with skew-morphism ¢. Suppose
= is a normal subgroup of I' which is contained in ' and invariant under ¢ .
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Let T =T/Z, and let Q denote the image of Q under the quotient map I' — T.
Then p induces a permutation p on 2 and gives rise to an RBCMy CM(T,Q,p).
Furthermore, if CM(T,Q, p) has type II, then so does CM(T,Q,p).

Proof. For n € T, let 77 denote its image under the quotient map I' — T.

The map % : I — T, 1 = ¢(n) is well-defined, as p(¢n) = (£)e(n) for
any £ € Z. Let 7 be the power function of CM (T, 2, p). It induces a function
7:T — {1,t} in an obvious way. For all 7, i1, we have

p(m) = ¢(nu) = e(n)e™ (1) = 2@ ™ (1).
So p = ¢|q induces a permutation p on Q, building CM(T,€,p) into an
RBOM,.
The assertion about type follows from the first sentence of Remark 1.2. [

The idea is, to understand an RBCM; M on I', we take a suitable subgroup
Z, investigate the quotient RBCM; M on I'/Z, and use knowledge on M to
extract information about M as much as possible.

In this paper, we apply the reduction method to classify RBCM,’s for a class
of split metacyclic 2-groups.

A general split metacyclic group can be presented as

(12) Alnymir) = (@, 8] " = 8™ = 1, Baf ™! = o)

for some positive integers n, m,r such that r™ =1 (mod n); see [8, p. 2]. We
focus on A(2%,2%;1 + 2¢), with

(1.3) max{2,a—b} <c<a—3 and b#c.

These groups constitute a major part of split metacyclic 2-groups of Class A, as
introduced on [5, p. 2]. The artificial restriction (1.3) is imposed for simplicity,
so that the paper has a clear structure and a moderate length; if b = ¢ is
allowed, then some annoying subtleties will arise, but nothing interesting will
happen.

The main result is Theorem 3.10. As shown in [15], any metacyclic p-group
for odd prime p does not admit an RBCM;; (by Proposition 1.1, it does not
admit an RBCM; for ¢ > 1). On the contrary, we shall see that the meta-
cyclic 2-group A(2%,2°% 1 + 2¢) admits a rich family of RBCM’s, consisting of
2¢=¢~! jsomorphism classes. To some extent, we can say that the richness and
complexity of RBCM;’s on metacyclic groups are concentrated on metacyclic
2-groups.

Section 2 presents a preliminary on metacyclic groups. Section 3 comprises
the main steps of classifying RBCM,’s. First, we combine Lemma 1.3 and the
previous work [1] on RBCM,’s on abelian 2-groups to deduce several constraints
on RBCM;’s on metacyclic 2-groups, stated as Lemma 3.2. Second, based
on the work [3] on automorphisms of metacyclic groups, we show that each
RBCM,; can be “normalized”, in the sense that it is isomorphic to one with
the property that ¢, and wg are in certain special forms. Third, we solve a
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system of congruence equations which characterize conditions for given data to
determine a normalized RBCM;. Finally we state the classification as Theorem
3.10.

Notation.

For positive integers u, s, let [u]s =1+ s+ -+ + s%71; let [0]s = 0.

For u # 0, let ||u|| denote the largest k with 2% | u; set ||0] = +oo.

For an element 6 of a finite group, let |0| denote its order.

Let Z,, = Z/nZ, which is a quotient ring of Z.

For an abelian 2-group I, let k(I") denote its rank.

Given a normal subgroup = < I'; the image of n € I' under the quotient
I' — T'/E is usually denoted by 7, (but for u € Z, its image under Z — Z,, is
still denoted by u), and if an automorphism ¢ of I satisfies ¢(Z) = =, then its
induced automorphism on I'/Z is denoted by &.

An RBCM,; CM(T,Q,p) is shorten as CM(T',Q) if Q can be written as
{wi,...,wq} and p(w;) = w;y1. The subscript in w; is always understood as
modulo d. Let Aut™(T') = {r € Aut(T): 7(I'y) =T, }.

Since various congruences modulo powers of 2 will appear in the computa-
tions, to simplify the writing we use A =*) B to indicate A = B (mod 2F).
Furthermore, abbreviate A =1 Bto A= B, and A =® B to A=’ B.

2. Preliminary on metacyclic groups

A general element of A = A(n, m;r) can be written as a*8Y. By (1.2) we
have

Bra” =a""" B,
(a1 5Y1) (a2 5Y2) = am1+r2rylﬁy1+y27
(Oéa:ﬁy)u _ aw[u],.y ﬂyu’

[axlﬂyl’al'Qﬂyz] — a$1(1—7'y2)—:62(1—7"y1)-

(2.1)

Here ¥ is understood as r¥=™/™ if y < 0, [u],+ is understood as [u—n[u/n]]
if u < 0, and the commutator [n, u] = nun~'p~!. Consequently, the commuta-
tor subgroup is generated by (a”~!), hence the abelianization

Aab = A/[A,A] = Z(r—l,n) X Loy -
Lemma 2.1. There are three index 2 subgroups of A = A(n,m;r), namely,
(a®,8), (a,5) and (a®, ap).

Proof. Each homomorphism A — Zs factors through A?P, and there are exactly
three epimorphisms &; : A2b =~ Lir—1n) X Ly — L3, 3 =1,2,3, given by

k1(u,v) = u, ko(u,v) = v, k3(u,v) = u+v.

Let %, denote the composite of the quotient A — A*® and r;. It is easy to see
that ker &1 = (a2, ), ker ko = (a, %), ker k3 = (a2, af). O
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The following is a special case of [3] Theorem 2.9, in which, A; = {2},
A=AN=0,a0=co=a,by=0bdo=c,t=2% m=2 my=1.

If there is an automorphism o of A(n, m;r) sending o and § to a®*3¥* and
a®23¥2, respectively, then we denote such automorphism o by o7l'v1 in this
paper.

Lemma 2.2. Suppose ||r — 1|| = ¢ > 2. Each automorphism of A(2%,2% ) is
gwen by oylvt oy @BV, B a2 392 for some integers x4, Y1, T2, Y2 with

21 z1y2 — w201, [y1ll > b —c, 22|l > a -0,
—(a—c) L+207e7l ifb=a—c= vl + ¢
Y2 = .
1, otherwise.

Actually, any x1,y1,T2,y2 satisfying these define an automorphism.
Acting on general elements,

T1YL (AU QYY) — 21Ul +r¥1 2 [v], v gyiutyav
0-12,7112(0[ /8 )_ «@ ! " ﬁ .

3 T1,Y1 P1,q1 i P1,91 5 5T1,Y1 h1 gq1x1+q2y1
Given o31°¥1 and ob1-11, the composite ohl"d1og71 b1 sends o to o™ 3

and sends § to a2 02 T2Y2 with
hj =p1 [ﬂjj}rtn + quszg[yj]rtm, j = 1, 2.
Let 7 = 1+ 2°. Since 2(||q1|| + ¢) > b+ ¢ > a, we have r9* =(@) 1 4 2°¢u,

SO

z;—1 .
[yl =D 7 = a2 gy (1),

r%ipy =) py + 2°qajpy = ps.
Suppose ¢ > b which will hold in the next section. Then |z2| > a — ¢,
[p2]l > a — ¢, so that 2¢~tze =) 0, and pa[y;l,e: =) pay;, implying
h = prei (1427 g (e = 1) +pay1, b = pras + poys.
Thus

(2.2) gPLd o g1y — pra1(14+2°7 g1 (21 -1))+p2y1, 121 +g2u
. P2,92 T2,Y2 pP1x2+P2Y2,9122+q2Y2 '

3. Classifying regular t-balanced Cayley maps for a class of split
metacyclic 2-groups

Let A = A(2%,2%1 + 2°) for (a,b,c) satisfying (1.3). In particular, b > 3,
c> 2.
By [3] Lemma 2.1, [|[u](142¢)v || = [lu|. Then by (2.1),

(3.1) la® gY| = gmax{a=llzl.b=llyll},

Suppose CM(A, {w1,...,wq}) is an RBCM; with skew-morphism ¢. As in
Remark 1.2, we may further assume ¢ € {(t — 1,d)/2,(t — 1,d)}, so

(3.2) Wi = w; L, i=1,....d.
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Let n; = Wj%fl1 = WjWeye(j—1)- Then
(3.3) Ag =, na),
wiw b =miem,  i=1,...,d;
in particular,
(3.4) wit=wewt =M.
Moreover, o(w;jwe4(j-1)) = Wit19 (Wete(j—1)) = WjH1Wetej, Le.,
(3.5) o+ (0j) = 1.
3.1. Constraints

Lemma 3.1. Suppose CM(T,{p1, ..., um}) is an RBCM; with skew-morphism
¥, and T is an abelian 2-group such that tk(T') =rk(T'y) = 2. Then

(1) there exists an isomorphism I'y = Zow X Zgr for some k' > k > 1,
sending 61 to (1,0) and 05 to (—1,1), where 6; = pj — pj_1;
(i) CM(T, {p1s-- -, pm}) has type I, and m = 2F+1 | ¢ 4+ 1;
(iii) 92 = id.
Proof. RBCM,’s on abelian 2-groups were completely classified in [1] Section

4.2, Corollary 4.3 and Corollary 4.7; obviously rk(T") = rk(T"t) = 2 only occurs
in the last case of Section 4.2. The conditions (i)—(iii) can be easily verified. O

Lemma 3.2. For our RBCM; CM(A, {w1,...,wq}), the following holds:
(i) it has type I, with A, = (a?, B) = A(2071, 251 4 29);
(ii) ¢> b, and ||t + 1] > b;
(iil) ¢4 = ogiyt for some x1,y1, T2, y2 with 2{y1 and

ol oy =1 mi e = g o —1=0.

Remark 3.3. As a consequence of (ii), ¢ > 4.
Be careful: here ¢ = ofl'¥! means that it sends o to a*** %' and sends
B to a?z2 vz,

Proof of Lemma 3.2. The proof consists of three parts.
(1) Assume Ay = (a?,af), n; =a%i % (j=1,...,d), and

pr(a®) = (@)™ (aB),  py(af) = (a®)™(ap)”.
Since |(a?)*2(aB)¥2| = |o+(aB)| = |af|, by (3.1) we have 2 { yo; from
1= @+((a2)2“’1) _ ((a2)11(aﬁ)y1)2a71 _ (a2w1+[y1]1+265y1)2“’1

we see 2 | y1. From (3.5) we see that all the v;’s have the same parity, which,
by (3.3), must be odd. By (3.4), 2 | vy + - -+ + vy, so £ is even.
On the other hand, one can verify that the subgroup

E=(a,8%) = (”,(aB)”)
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is normal in A and invariant under ¢y. By Lemma 1.3 there is a quotient
RBCM; M on A/Z & Zge X Zge. Clearly tk(A/Z) = rk(A4 /Z) = 2, hence by
Lemma 3.1, M has type I, and 4 | t + 1. By Lemma 1.3, our RBCM; has type
I. Hence £ = (t — 1,d)/2, contradicting 2 | £.

(2) Assume A, = (a, %), n; = a“if% (j = 1,...,d) and ¢, = oZl ¥
Since Ay = A(2¢,2°1 (1 4 29)2), by Lemma 2.2 we have

(3.6) gl =b—c=2, Jzaf Za-b+1, y2=1Za-c-2

The subgroup =’ = <a20752b71> is normal in A and invariant under ¢, with
A/EI = ZQC X Zzb—l and A+/E/ = ZQC X Zzb—z. In A+/EI,

o= wa@+ v 52,

m+ 7 = (1 + Dug + xovr)a + (yrug + (y2 + 1)vy) 32

By Lemma 1.3 and Lemma 3.1, 4 |t +1 and ¢ = (t — 1,d)/2, so that 21 £.

If 2 | x2, then 2 { x4, so that u; = w; (mod 2); by (3.3), 2 t uy, hence
ne---m = a* BY for some odd v/, but this contradicts (3.4). Hence 2t 2, and
consequently b—1>a > c+ 3.

By Lemma 3.1(i), [77] = 2°72 and |71 + 72| = 2¢. Hence 2 vy, and

c>b—2—|lyrur + (y2 + Dvy|| = b—3;

the inequality comes from (3.1), and the equality relies on (3.6) which implies
|yl > b—c—2>2> |ly2 + 1|| = 1. This contradicts b —1 > ¢+ 3.

(3) Therefore by Lemma 2.1, Ay = (a?,8) = A(2971,2% 1 + 2¢). Suppose
@ =oi¥, and n; = o 3.

The subgroup (a?°) is normal in A and invariant under ¢,. Applying
Lemma 3.1 to the quotient RBCM, on A/(a?") 2 Zye X Zoy, we obtain 4 | t+ 1
and £ = (t —1,d)/2. So 21¢.

If 2| y1, then v; = v1 (mod 2) for all j; by (3.3), 21 v1, and since 2 { ¢, we
have g - -1 = 2% ¥ for some odd v/, contradicting (3.4). Hence 21 y1, and
then by Lemma 2.2, b < ¢+ |ly1]| = ¢. Since b # ¢, actually ¢ > b.

By Lemma 3.1(iii), 32 = id. The expression for 77?2 is

02 = (23 + zay1)0? + yi(z1 + 2) B,

B za(w1 + y2)a® + (way1 + y3)B

Thus, Z‘% + T2y1 =(-1 1 and 1+ Yo =/ y% + 22y; — 1 =0. O

3.2. Normalization

Lemma 3.4. Let o201 € Aut(AL). There exists 7 € Aut™(A) with 74 =
o1 gf and only if 2 | wy and ||wy — 1|| > a —c.

022 ,W2
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Proof. If 7 = o21-41 € Aut™ (A), then by Lemma 2.2, 2 | ps and ||g2—1[| > a—c.

As an automorphism of A, 7, (a?) = aP*G+2°0) g2a1 7. (B) = P29, hence

_ p1(142°7 1) 21
T+ = Opy/2,0 :

So 2 | wy and |lwy — 1]| > a — ¢ are necessary for there to exist 7 € Aut™(A)
with 7. = o711,
Conversely, suppose 2 | w; and |jwg — 1| > a — ¢. Put

(1272w 21w /2
T = 0’222’,‘“2 .

It is clear that 7 € Aut™(A) with 7, = o211 O

Z2,Ww2 "

Lemma 3.5. Suppose h is odd, e > 2, and s> =© h. There exists a se-
quence {31}5%, such that 53 =*E=D) b and 5, =FCED=D 5 for each k.

Consequently, for each é > e, there exists § such that 5> =© h and 5§ =(¢=1) s.

Proof. We construct §j, recursively. Since s is odd, we may take a; € Z such
that h =(2(¢=1) s2 4 2¢5a;. Set 55 = s + 2" 'a;. Then clearly 52 =(2(=1) p
and 5, =1 g,
Assume k£ > 2 and 3 has been obtained. Take ap € Z with
B =((k+1)(e—1)) gi + Qk(efl)gkak’
and set
Spy1 = §p 4 28D =1g,

Then §pq1 =FED=1 5 and 82, =(k+DE=D) 1 due to 2k(e — 1) — 2 >
(k+1)(e—1). O

Lemma 3.6. There exists 7, € Aut™(A) such that (ripm; ')y = cfgiz for
some z =(¢"2) —1.
Proof. We are going to find uq, vy, us, ve, 2, w satisfying the following;:

(3.7 urxy (1427 oy (21 — 1)) + ugyy = zug (14267 (uy — 1)),

(3.8) v1x1 + vy = ug + woy,
(3.9) ULT2 + UsYs = Zug,
(3.10) V1To + Vays = Us + wus.

In view of (2.2), these will ensure

u1,v1 _ %l u1,v1
Gug,vz CP+ = GO,w © Uuz,vg'

Take  with (142! (y; — 1))y = 1, and let

YT+ Y2\ ? Yo+ y2\?
— ) e ()
Remember that ¢ > a —b>a —c¢> 3 and |Jza| > a —b. Then f(z;) =" 0.
By Lemma 3.5, there exists z with f(z) = 0 and z =1 z;. Note that
Iz = g2l = 21 =yl = 1.

f@) = (@ = 7@1)(e - o) — w2 = (=
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Let up = 41, v1 =0, v2 = 1, w = yo — ug, and ug = (1 +2°"(y; — 1))z — 2.
Then f(z) =0 is equivalent to

(2 — y2)us = z2y1.
It is easy to verify that (3.7)—(3.10) all hold. Now it holds that
luzll = llz2ll + llyall = 1z = 2ll = le2ll -1 > a—c— 1,

by Lemma 3.4, o141 = (71) 4 for some 71 € Aut™ (A).

Consider the automorphism of A /() induced by 7,7, !. Similarly as
the final part of the proof of Lemma 3.2, we have 22 =(¢=1 0 and 2z + w =/
w? —1 =" 0. Thus (rier ')+ = og'L.. Note that w = yo = 1 (mod 4),
implying ||z + 1|| > ¢ — 2. O

Lemma 3.7. Suppose x =2 z =(c=2) _1. Ifr € Aut™(A) with 7, = obia
1

1 - 1 )
then T4 o US,’,Z oT, " = 03:71 s equivalent to

(3.11) p2ll > a =2,  p1—q="22q1, w=2+pa

1

In particular, Ty 003:1_2 oT, = oé)’iz if and only if po = 0 and p1 — g2 =’ 22q;.

Proof. By Lemma 3.4, 2 | ¢; and [lgz — 1| > a —c.
By (2.2), 74 o aé:iz = a&’ix o T4 is equivalent to

(3.12) plz(l + 27 gy (2 — 1)) +po = xpl(l +2¢7H(py — 1)),
(3.13) @1z +q2 = p1—2qu,

(3.14) —poz = Tpa,

(3.15) —q2z = pa — xq0.

Since z =(¢=2) 2 =(¢=2) _1, we have ||z +2|| = 1, hence by (3.14), ||pa|| > a—
2. Then (3.15) implies 2 =(*~2) 2, and consequently by (3.13), p; — g2 =’ 22q;.
Now it holds that ¢ — 1 > b > a — ¢, and one has

pr—1=(p1—q)+(—1)=""9 22 =79 (z = 1)qu,
which together with (3.12) implies

zp1(1+27 (2= Dgr) +p2 = api (1 +2°7 (2 — L)ga).

Since py = po -p1(1 +2¢7 (2 — 1)q1), we have z = z + po.
Conversely, assuming (3.11), it is rather easy to deduce (3.12)—(3.15). O

Lemma 3.8. (i) There exists o € Aut™(A) such that (15) o Ugiz = Uéiz o
(12) 1 and (1o71)(wq) = a®B for some odd 1.
(ii) For any @' with @' =~ 4, there exists T € Aut™(A) such that 7, o

o5t =05l ory and 7(a8) = ¥ B.
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Proof. (1) Suppose 71(wq) = a0 . Note that ug is odd: otherwise it is
impossible for 71 (n1),...,71(n4), 71 (wq) to generate A.
Take y with yug =’ 1 —vg. Let p =1+ 4zy, and let

@ = (1 =2 y)puo(1 + 2y (ug — 1)).
Let 7 = 0(()11_26713’)’7’3’, so that (m5)4 = 0%2Y. Then (1571)(wq) = &3, and by
' z,1 z,1 ’
Lemma 3.7, (72)4 0 05—, = 05—, © (T2)+-
(ii) Take y with yo = —2%7¢q, with g to be determined. Let p’ = 142G+
4zy. Consider
u(@ = (1 -2 yp'a +2 y(a - 1))
— pla((l _ 20_1y)2c_1yﬂ/ + 1— 2(,y + 220—2y2)
=@ pa(—2071g +1)
=) (14 4y + (1 - 2°71(1 + 429))2°"“g) .

Obviously, we can find G such that u(g) = @'
/70
Let 7 = Ug,1+2afca'

= aﬂ’lﬁ, ‘:l

’
— P50 ; z,1 @
Now 74 = 07 | 5a- oy commutes with og’_, and T(a™p)

y TR

Concluding from the above lemmas, up to isomorphism we may just assume
oy = 05:1_2 for a unique z with 0 < z < 22 and z =(¢=2) —1, and wy = a%f
such that 4 is an odd number whose residue modulo 2%~¢ is unique.

3.3. Expressing necessary and sufficient conditions in terms of con-
gruence equations

Remember that for each k,

(1+29F=1+2%,  [ki4oe = k(1 +2°7(k —1)).
Implied by z =(¢=2) —1,
(3.16) [4(z+1)?| >2c—2>a—1.
Suppose 1; = a?%i 3%, Then wiwgl =n;---m = a>fi 9 where
(3.17) fi=w+ 1+ 2%)u—1+ -+ 1+ 2% + -+ - + v2))u,
(3.18) gi = v+ -+ 0.

So w; = o2fit(1+2%9)u ggit1

The condition (3.2) is equivalent to
(3.19) foiei+ (1 =2%(gi + 1)) fi + (1 + 27 (gerei — 1))a =0,
(3.20) Gorti +gi +2="0.
Also the condition 1 = wdwd*l = a?fep9¢ implies that

(3.21) fa=0, ga='0.
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From (2.2) and 22 ==Y 1 we see 2 = O’S:?, with s = 22 +2¢71(z — 1).
Hence
— —/
(322) Ui4+2 = SU;, Vi+2 = V.

Clearly, us = u; (mod 2). It follows from (3.3) that the u;’s are all odd.
Put

u=uz + (14 2%(uq + v1))us, T = vy + vg.

Since
U = z[ur]i4oe = (2 — 27 (ug — 1))uy, vo = uy — 21,
we have
(3.23) T= (24142 ug 4 201 +1))u,
(3.24) (s—Da= (24122 — Duy 2 2z 4 1),
(3.25) v="u + (1 —2)v1.

Obviously, s =(¢=1 1, so that for each n,
(3.26) s"=1+4+n(s—1).
Now (3.17), (3.18) (3.22) imply

for=T- Z 1 + 2% (ug + 201))s* 1 =@kl = ku — k(k — 1) (2 + 1),

forsr = sFuy + (1 + 2¢v) for = (14 k(s — 1))ug + ki — k(k — 1)(z + 1)?,
gor, = kv and  gopy1 = kU +vq.

Lemma 3.9. Let h = ({ —1)/2. The conditions (3.19)—(3.21) hold if and only

if

(3.27) hv+wv; +2="0,

(3.28) up +ha=hh+1)(z+1)2+ (3.2 — 1+ h(s — 1))a,
(3.29) 20z+1)2 =204+ (1 - 5),

(3.30) |t + 1|| > max{a — ¢+ 2,b+ 1},

(3.31) |d|| > max{a — ¢+ 2,b+ 1}.

Proof. Let e = (t+1)/2. Let (3.20);—9; stand for (3.20) when ¢ = 2k, and so
forth.
The condition (3.20);—2 reads

(h+kt)v+v, +kv+2="0,

which, due to ||t + 1|| > b+ 1, is equivalent to (3.27). Conversely, if (3.27) is
satisfied, then (3.20);=2,+1 holds, too:

Jort2ht1) + 9ort1 +2=" (h+ kt+e)v+kv+v, +2="0.
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In virtue of 2°a = 0 and (3.16), the condition (3.19);—o) reads
(332) s" Ry + b — (B — b+ (2h + 2)k) (2 + 1)?
+(1+2((h+ kt)yo+ v — 1))@ = 0.
Then the difference between (3.19);—2542 and (3.19);-2; is equal to
(3.33) (1—s8)uy + (2h +2)(z+1)* =250 = 0,

where (3.16), (3.26) have been used.
Setting k£ = 0 in (3.32), we obtain

(1+h(s—1)us + hw — h(h —1)(z +1)?
+ (1427 (h0+ v — 1))@= 0.

Clearly, (3.19);—2) holds for all k if and only if (3.33) and (3.34) hold. With
(3.24) referred to, (3.33), (3.34) are equivalent to

(3.35) up +ha=hh—1)(z+1)% = (1 +2 vy — 1))a,
202+ 12 =20+ (1 — 9))a

(3.34)

Note that the second equation is equivalent to (3.29) and forces ||s—1| = ¢—1.
Hence ||z + 1|| = ¢ — 2, and by (3.23), ||| = ¢ — 2.

The condition (3.19);—2;41 reads
(3.36) (h+e)a— (h? —h —2(h + 1)k)(z + 1) + sFuy — 2°(kT + vy + D)y

' + (1 4+ 27 ((h + kt)o — 1))@ = 0.

So the difference between (3.19);—2x+3 and (3.19);—2x+1 equals
(s —1—2D)uy +2(h+1)(z +1)* — 2 'wa = 0,
which can be implied by (3.35), assuming (3.33).
Setting k = 0 in (3.36), we obtain
(h+e)a—h(h—1)(z+1)* 4+ (1 —2°(vy + 1))uy + (1 +2°7H(hv — 1))@ = 0;

it combined with (3.35) implies eu = 0, which is equivalent to (3.30).
By (3.27), (3.29), 27 tv; = h(1 — s) — 2h(z + 1)? — 2¢, and hence (3.35)
becomes (3.28).
Finally, (3.21) holds if and only if
d d d

FU=5(5 -G+

which are equivalent to (3.31), as is easy to verify. O

N

— __/
v = 0,

Now since ||z + 1|| = c—2 and 0 < z < 272, we may write

2=2%2x —1) -1, 1 <z<2ee L
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By (3.29), using (22 — 1)2=1 (mod 4) and ¢ — 1 > b > a — ¢, we obtain

22 -1

7= S Tzl =(a=e) _9e=3 _ 9y 1,
(3.37) v =079 —pp —2=079 _2¢73h L B2+ 1) — 2,
(3.25)
(3.38) up = T+ (z— 1Dy =079 4273 - (204 1)(2z + 1).

By (3.23), |[@]| = ¢ — 2. By (3.28), & =" hw — uy; ==Y 2¢72h — w4, so that
=" 2h+1)(2° 3 +22+1) — 4.
According to the conclusion in the end of Section 3.2 we may just set
i=(2h+1)2°3 + 22 +1) — 4.
By (3.37), (3.38),
uy 4 201 +1 =979 —2¢73(2h + 1) — 22,
Hence by (3.23),
(3.39) u= (24 Du — 2071 (273 (2h + 1) + 22) 4
Using
s—1=22—1+27Yz—1)= —22* - 271 (22 + 1),

we convert (3.28) into

(1+2°72h(2x — 1))uy = 27 h(2°73(2h + 1) + 22)a + h(h 4 1)2%74

+ (327 =1 —h* 27 22+ 1)))a
= h(h+1)2%74 4 (227302 + (3 — h)2°7 ! — 1)4,
implying
up = (1—2°7?h(2z — 1) — 227*h?) (h(h + 1)2%7*
(3.40) +(2°7°h* + (3— h)2°7' — 1)a)
=h(h+1)22" 4+ ((3— h+ hx)2°7t — 1 +2°72h — 227 4p2)q.
So (3.39) becomes
= (22"Hh+1) —2°%(6z — 1))@
Finally, (3.40) implies
up = (2°%h—1)a="4-2% - (2h +1)(2z + 1).

Hence by (3.25) and (3.27),

. huy + 2 _ (1 —2°72h)i — 2

1+h(l—2)  2h+1-—2"2h(22 —1)

where the meanings of fractions are self-evident. So

T="u + (242 %), =/ —2°7% — 22 — 1.

= h(2°3 4224+ 1) -2,
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3.4. The result
Recall

b E—Tl _ %((t —21,d) _1).

For each « with 1 < x < 247 ¢~ 1 let

= (2h+1)(2°73 + 22+ 1) — 4,
7= (22" h+1) - 226z — 1))i,
w=nh(h+ 1224 £ ((3—h+hx)2°7t —14+2°72h — 2274p2)q,

for = ku — k(k —1)2%74,
fort1 = (1 +2°k)u + ku — k(k — 1)22°74,
—k(2°7% 4+ 22 + 1),
(h=k)(2°3 + 22+ 1) -2,

92k

92k+1

and put M(z) = CM(A, {w1,...,wq}) with w; = 2fit(1+270)agoit1,

Theorem 3.10. If A admits d-valent RBCM,’s, then necessarily ||d||, [[t+1| >
max{a —c+2,b+ 1} and ¢ > b. When these hold, each d-valent RBCM; on A

has type I and is isomorphic to M(zx) for a unique x with 1 < x <

[1]

2]

[9]

(10]

2a7071
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