참고문헌
- S. Ali and N. A. Dar, On ∗-centralizing mappings in rings with involution, Georgian Math. J. 21 (2014), no. 1, 25-28. https://doi.org/10.1515/gmj-2014-0006
- S. Ali, N. A. Dar, and A. N. Khan, On strong commutativity preserving like maps in rings with involution, Miskolc Math. Notes 16 (2015), no. 1, 17-24. https://doi.org/10.18514/mmn.2015.1297
- H. E. Bell and M. N. Daif, On commutativity and strong commutativity-preserving maps, Canad. Math. Bull. 37 (1994), no. 4, 443-447. https://doi.org/10.4153/CMB-1994-064-x
- M. Bresar and C. R. Miers, Strong commutativity preserving maps of semiprime rings, Canad. Math. Bull. 37 (1994), no. 4, 457-460. https://doi.org/10.4153/CMB-1994-066-4
- C.-L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (1988), no. 3, 723-728. https://doi.org/10.2307/2046841
- N. A. Dar, S. Ali, A. Abbasi, and M. Ayedh, Some commutativity criteria for prime rings with involution involving symmetric and skew symmetric elements, Ukrainskyi Matematychnyi Zhurnal 75 (2023), no. 4, 455-466. https://doi.org/10.37863/umzh.v75i4.6751
- N. A. Dar and A. N. Khan, Generalized derivations in rings with involution, Algebra Colloq. 24 (2017), no. 3, 393-399. https://doi.org/10.1142/S1005386717000244
- B. Hvala, Generalized derivations in rings, Comm. Algebra 26 (1998), no. 4, 1147-1166. https://doi.org/10.1080/00927879808826190
- M. A. Idrissi and L. Oukhtite, Structure of a quotient ring R/P with generalized derivations acting on the prime ideal P and some applications, Indian J. Pure Appl. Math. 53 (2022), no. 3, 792-800. https://doi.org/10.1007/s13226-021-00173-x
- T.-K. Lee, Generalized derivations of left faithful rings, Comm. Algebra 27 (1999), no. 8, 4057-4073. https://doi.org/10.1080/00927879908826682
- P.-H. Lee and T.-K. Lee, Lie ideals of prime rings with derivations, Bull. Inst. Math. Acad. Sinica 11 (1983), no. 1, 75-80.
- J. Ma, X. W. Xu, and F. W. Niu, Strong commutativity-preserving generalized derivations on semiprime rings, Acta Math. Sin. (Engl. Ser.) 24 (2008), no. 11, 1835-1842. https://doi.org/10.1007/s10114-008-7445-0
- L. Oukhtite and A. Mamouni, Generalized derivations centralizing on Jordan ideals of rings with involution, Turkish J. Math. 38 (2014), no. 2, 225-232. https://doi.org/10.3906/mat-1203-14
- L. Oukhtite, A. Mamouni, and M. Ashraf, Commutativity theorems for rings with differential identities on Jordan ideals, Comment. Math. Univ. Carolin. 54 (2013), no. 4, 447-457.
- P. Semrl, Commutativity preserving maps, Linear Algebra Appl. 429 (2008), no. 5-6, 1051-1070. https://doi.org/10.1016/j.laa.2007.05.006