DOI QR코드

DOI QR Code

Estimating pile setup parameter using XGBoost-based optimized models

  • Xigang Du (Department of Transportation Engineering, Hebei University of Water Resources and Electric Engineering) ;
  • Ximeng Ma (Department of Transportation Engineering, Hebei University of Water Resources and Electric Engineering) ;
  • Chenxi Dong (Department of Transportation Engineering, Hebei University of Water Resources and Electric Engineering) ;
  • Mehrdad Sattari Nikkhoo (Department of Civil Engineering, University of Mohaghegh Ardabili)
  • Received : 2023.11.05
  • Accepted : 2024.01.07
  • Published : 2024.02.10

Abstract

The undrained shear strength is widely acknowledged as a fundamental mechanical property of soil and is considered a critical engineering parameter. In recent years, researchers have employed various methodologies to evaluate the shear strength of soil under undrained conditions. These methods encompass both numerical analyses and empirical techniques, such as the cone penetration test (CPT), to gain insights into the properties and behavior of soil. However, several of these methods rely on correlation assumptions, which can lead to inconsistent accuracy and precision. The study involved the development of innovative methods using extreme gradient boosting (XGB) to predict the pile set-up component "A" based on two distinct data sets. The first data set includes average modified cone point bearing capacity (qt), average wall friction (fs), and effective vertical stress (σvo), while the second data set comprises plasticity index (PI), soil undrained shear cohesion (Su), and the over consolidation ratio (OCR). These data sets were utilized to develop XGBoost-based methods for predicting the pile set-up component "A". To optimize the internal hyperparameters of the XGBoost model, four optimization algorithms were employed: Particle Swarm Optimization (PSO), Social Spider Optimization (SSO), Arithmetic Optimization Algorithm (AOA), and Sine Cosine Optimization Algorithm (SCOA). The results from the first data set indicate that the XGBoost model optimized using the Arithmetic Optimization Algorithm (XGB - AOA) achieved the highest accuracy, with R2 values of 0.9962 for the training part and 0.9807 for the testing part. The performance of the developed models was further evaluated using the RMSE, MAE, and VAF indices. The results revealed that the XGBoost model optimized using XGBoost - AOA outperformed other models in terms of accuracy, with RMSE, MAE, and VAF values of 0.0078, 0.0015, and 99.6189 for the training part and 0.0141, 0.0112, and 98.0394 for the testing part, respectively. These findings suggest that XGBoost - AOA is the most accurate model for predicting the pile set-up component.

Keywords

Acknowledgement

This work was supported by self-financing project of Cangzhou City Science and Technology Plan, "Study on internal force of precast piles based on quality soil of Huanghuagang in Cangzhou under" (No.204105005), and research project of basic scientific research and operation fee of Hebei University of Water Resources and Electric Engineering, "Study on non-limit passive earth pressure considering soil arching and displacement effect under" (No.SYKJ1901).

References

  1. Abdelsalam, M., Diab, H.Y. and El-Bary, A.A. (2021), "A metaheuristic Harris hawk optimization approach for coordinated control of energy management in distributed generation based Microgrids", Appl. Sci., 11(9), 4085. https://doi.org/10.3390/app11094085.
  2. Abellan-Garcia, J. and Guzman-Guzman, J.S. (2021), "Random forest-based optimization of UHPFRC under ductility requirements for seismic retrofitting applications", Constr. Build. Mater., 285, 122869. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2021.122869.
  3. Abu-Farsakh, M.Y. and Mojumder, M.A.H. (2020), "Exploring artificial neural network to evaluate the undrained shear strength of soil from cone penetration test data", Transport. Res. Rec., 2674, 11-22. https://doi.org/10.1177/0361198120912.
  4. Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M. and Gandomi, A.H. (2021), "The arithmetic optimization algorithm", Comput. Method. Appl. M., 376, 113609. https://doi.org/10.1016/j.cma.2020.113609.
  5. Aghakhani, S., Larijani, A., Sadeghi, F., Martin, A., Shahrakht, A.A. (2023), "A novel hybrid artificial bee colony-based deep convolutional neural network to improve the detection performance of backscatter communication systems", Electronics, 12(10), 2263. https://doi.org/10.3390/electronics12102263.
  6. Ahmadi, S., Motie, M. and Soltanmohammadi, R. (2020), "Proposing a modified mechanism for determination of hydrocarbons dynamic viscosity, using artificial neural network", Pet. Sci. Technol., 38, 699-705. https://doi.org/10.1080/10916466.2020.1780256.
  7. Akbarzadeh, M.R., Ghafourian, H., Anvari, A., Pourhanasa, R. and Nehdi, M.L. (2023), "Estimating compressive strength of concrete using neural electromagnetic field optimization", Materials, 16(11), 4200. https://doi.org/10.3390/ma16114200.
  8. Anbari, M., Arikan Ozturk, E. and Ates, H. (2020), "Evaluation of sustainable transport strategies for Tehran with thetheir urbanization rate criterion based on the fuzzy ahp method", J. Xi'xxan Univ. Archit. Technol., 12. https://doi.org/10.37896/jxat12.07/2394.
  9. Asadi, S., Roshan, S. and Kattan, M.W. (2021), "Random forest swarm optimization-based for heart diseases diagnosis", J. Biomed. Inform., 115, 103690. https://doi.org/10.1016/j.jbi.2021.103690.
  10. ASTM D2850-03 (2017), Standard Test method for unconsolidated-undrained triaxial compression test on cohesive soils. ASTM
  11. ASTM D3441-16 (2018), Standard test method for mechanical cone penetration testing of soils. Annu B ASTM Stand West Conshohocken, PA. https://doi.org/10.1520/D3441-16.
  12. ASTM D422-63 (2007), Standard test method for particle-size analysis of soils. ASTM D422-63, West Conshohocken, PA.
  13. ASTM D4318-17e1 (2018), Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM, West Conshohocken. https://doi.org/10.1520/D4318-17E01.
  14. ASTM D7263-21 (2021), Standard test methods for laboratory determination of density and unit weight of soil specimens. ASTM, West Conshohocken. https://doi.org/doi.org/10.1520/D7263-21.
  15. Axelsson, G. (1998), "Long-term set-up of driven piles in non-cohesive soils evaluated from dynamic tests on penetration rods", In: Geotechnical site characterization, 895-900.
  16. Azizi, S., Dadarkhah, A. and Masouleh, A.A. (2020), "Multi-objective optimization method for posture prediction of symmetric static lifting using a three-dimensional human model", Ann. Mil. Heal. Sci. Res., 18(2). https://doi.org/10.5812/amh.104283.
  17. Bullock, P.J. (2008), "The easy button for driven pile setup: dynamic testing", From Res. Pract.Geotech. Eng., 471-488. https://doi.org/10.1061/40962(325)17.
  18. Bullock, P.J. (1999), Pile friction freeze: A field and laboratory study, University of Florida.
  19. Camp III, W.M. and Parmar, H.S. (1999), "Characterization of pile capacity with time in the Cooper Marl: study of applicability of a past approach to predict long-term pile capacity", Transp. Res. Rec., 1663(1), 16-24. https://doi.org/10.3141/1663-03.
  20. Chen, T. and Guestrin, C. (2016), "Xgboost: A scalable tree boosting system", Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining.
  21. Chen, T., He, T., Benesty, M. and Khotilovich, V. (2015), "Xgboost: extreme gradient boosting", R Packag version 04-2 1:1-4.
  22. Cuevas, E., Cienfuegos, M., Zaldivar, D. and Perez-Cisneros, M. (2013), "A swarm optimization algorithm inspired in the behavior of the social-spider", Exp. Syst. Appl., 40(16), 6374-6384. https://doi.org/10.1016/j.eswa.2013.05.041.
  23. Dawei, Y., Bing, Z., Bingbing, G., Xibo, G. and Razzaghzadeh, B. (2023), "Predicting the CPT-based pile set-up parameters using HHO-RF and PSO-RF hybrid models", Struct. Eng. Mech., 86(5), 673-686. https://doi.org/10.12989/sem.2023.86.5.673.
  24. Dehghan, S. Comparison of seismic behavior factors for reinforced concrete (RC) special moment resisting frames (SMRFs) in Iran in low-, mid-, and high-rise buildings based on Iranian seismic standard 2800 and ASCE
  25. Dehghani, F. and Larijani, A.A. Machine Learning-Jaya Algorithm (Ml-Ijaya) Approach for Rapid Optimization Using High Performance Computing. Available SSRN 4423338
  26. Duan, L., Wu, M. and Wang, Q. (2022), "Predicting the CPT-based pile set-up parameters using HHO-RF and WOA-RF hybrid models", Arab. J. Geosci., 15, 1-19. https://doi.org/10.1007/s12517-022-09843-4.
  27. Esmaeili-choobar, N., Esmaeili-falak, M., Roohi-hir, M. and Keshtzad, S. (2013), "Evaluation of collapsibility potential at Talesh", Iran. EJGE, 2561-2573.
  28. Esmaeili-Falak, M. and Benemaran, R.S. (2023), "Ensemble deep learning-based models to predict the resilient modulus of modified base materials subjected to wet-dry cycles", Geomech. Eng., 32(6), 583-600. https://doi.org/10.12989/gae.2023.32.6.583.
  29. Esmaeili-Falak, M. and Hajialilue-Bonab, M. (2012), "Numerical studying the effects of gradient degree on slope stability analysis using limit equilibrium and finite element methods", Int. J. Acad. Res., 4, 216-222 https://doi.org/10.7813/2075-4124.2012/4-4/A.30
  30. Esmaeili-Falak, M., Katebi, H. and Javadi, A. (2018), "Experimental study of the mechanical behavior of frozen soils-A case study of tabriz subway", Period Polytech. Civ. Eng., 62, 117-125. https://doi.org/10.3311/PPci.10960.
  31. Esmaeili-Falak, M., Katebi, H., Vadiati, M. and Adamowski, J. (2019), "Predicting triaxial compressive strength and Young's modulus of frozen sand using artificial intelligence methods", J. Cold Reg. Eng., 33, 4019007. https://doi.org/10.1061/(ASCE)CR.19435495.0000188.
  32. Faramarzi, A., Loghmani, N., Moghadam, R., Allahverdy, A. and Mansoory, M.S. (2021), "Semi-automated glioblastoma tumor detection based on different classifiers using magnetic resonance spectroscopy", Front. Biomed. Technol., 8(3), https://doi.org/10.18502/fbt.v8i3.7113.
  33. Focht, J.A. and Vijayvergiya, V.N. (1972), "A new way to predict capacity of piles in clay", Proceedings of the Offshore Technology Conference, OnePetro.
  34. Ge, D.M., Zhao, L.C. and Esmaeili-Falak, M. (2022), "Estimation of rapid chloride permeability of SCC using hyperparameters optimized random forest models", J. Sustain. Cem. Mater., 12(5), 1-19. https://doi.org/10.1080/21650373.2022.2093291.
  35. Guang-Yu, Z. (1988), "Wave equation applications for piles in soft ground", Proceedings of the 3rd International Conference on the Application of Stress-Wave Theory to Piles (Ed., B.H. Fellenius,), Ottawa, Ontario, Canada.
  36. Gwizdala, K. and Wieclawski, P. (2013), "Influence of time on the bearing capacity of precast piles", Stud. Geotech. Mech., 65-74. https://doi.org/10.2478/sgem-2013-0037.
  37. Hammerstrom, D. (1993), "Neural networks at work", IEEE Spectr., 30, 26-32. https://doi.org/10.1109/6.214579.
  38. Haque, M.N. (2015), Field instrumentation and testing to study set-up phenomenon of driven piles and its implementation in LRFD design methodology.
  39. Haque, M.N., Abu-Farsakh, M.Y., Chen, Q. and Zhang, Z. (2014) "Case study on instrumenting and testing full-scale test piles for evaluating setup phenomenon", Transport. Res. Rec., 2462(1), 37-47. https://doi.org/10.3141/2462-05.
  40. Hashemi, A. (2022), Advanced data science and physics-based modeling for dynamic systems.
  41. Hashemi, A., Jang, J. and Beheshti, J. (2023), "A machine learning-based surrogate finite element model for estimating dynamic response of mechanical systems", IEEE Access, 11, 54509-54525. https://doi.org/10.1109/ACCESS.2023.3282453.
  42. Hoang, N.D., Chen, C.T. and Liao, K.W. (2017), "Prediction of chloride diffusion in cement mortar using multi-gene genetic programming and multivariate adaptive regression splines", Measurement, 112, 141-149. https://doi.org/10.1016/j.measurement.2017.08.031.
  43. Huo, W., Li, W., Zhang, Z., Sun, C., Zhou, F. and Gong, G. (2021), "Performance prediction of proton-exchange membrane fuel cell based on convolutional neural network and random forest feature selection", Energ. Convers Manage., 243, 114367. https://doi.org/10.1016/j.enconman.2021.114367. https://doi.org/https://doi.org/10.1016/j.enconman.2021.114367
  44. Iqbal, M., Zhang, D. and Jalal, F.E. (2022), "Durability evaluation of GFRP rebars in harsh alkaline environment using optimized tree-based random forest model", J. Ocean Eng. Sci., 7, 596-606. https://doi.org/10.1016/j.joes.2021.10.012
  45. Iraji, S., Soltanmohammadi, R., Matheus, G.F., Basso, M. and Campane Vidal, A. (2023), "Application of unsupervised learning and deep learning for rock type prediction and petrophysical characterization using multi-scale data", Geoenergy Sci. Eng., 230, 212241. https://doi.org/10.1016/j.geoen.2023.212241.
  46. Iravani, S.N., Dehghan, S. An Investigation to the Seismic Performance of Base Isolator-Equipped Moment Frame Steel Structures.
  47. Jamil, U., Sulaiman, M., Ghafoor, N., Malmir, M., Nawaz, F. and Shakoor, R.I. (2023), "Power harvesting towards sustainable energy technology through ambient vibrations and capacitive transducers", Proceedings of the 2023 International Conference on Emerging Power Technologies (ICEPT).
  48. Johari, A., Habibagahi, G. and Ghahramani, A. (2011a), "Prediction of SWCC using artificial intelligent systems: A comparative study", Sci. Iran, 18(5), 1002-1008. https://doi.org/10.1016/j.scient.2011.09.002.
  49. Johari, A., Javadi, A.A. and Habibagahi, G. (2011b), "Modelling the mechanical behaviour of unsaturated soils using a genetic algorithm-based neural network", Comput. Geotech., 38(1), 2-13. https://doi.org/10.1016/j.compgeo.2010.08.011.
  50. Johari, A., Javadi, A.A. and Najafi, H. (2016), "A genetic-based model to predict maximum lateral displacement of retaining wall in granular soil", Sci. Iran, 23(1), 54-65. https://doi.org/10.24200/SCI.2016.2097.
  51. Joushideh, N., Majidi, A., Tabrizi, H. and Zadeh, S.S. (2023a), "Characterization of scour-Induced subsurface deformations in port structures with contiguous pile walls using Ground-Penetrating Radar (GPR)", Comput. Res. Prog. Appl. Sci. Eng. CRPASE Trans. Civ. Environ. Eng., 9, 52547.
  52. Joushideh, N., Zadeh, S.S., Bahrami, B. and Mahmoudabadi, N.S. (2023b), "Pseudo-static slope stability analysis and numerical settlement assessment of rubble mound breakwater under hydrodynamic conditions", World J. Adv. Res. Rev., 19(2). https://doi.org/10.30574/wjarr.2023.19.2.1542.
  53. Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", Proceedings of the ICNN'95-international conference on neural networks, IEEE.
  54. Khorshidi, M., Ameri, M. and Goli, A. (2023), "Cracking performance evaluation and modelling of RAP mixtures containing different recycled materials using deep neural network model", Road Mater. Pavement Des., 1-20. https://doi.org/10.1080/14680629.2023.2222835.
  55. Khoshaim, A.B., Elsheikh, A.H., Moustafa, E.B., Basha, M. and Mosleh, A.O. (2021), "Prediction of residual stresses in turning of pure iron using artificial intelligence-based methods", J. Mater. Res. Technol., 11, 2181-2194. https://doi.org/10.1016/j.jmrt.2021.02.042.
  56. Kiannejad Amiri, M., Ghorbanzade Zaferani, S.P., Sarmasti Emami, M.R., Zahmatkesh, S. Pourhanasa, R., Namaghi, S.S., Klemes, J.J. Bokhari, A. and Hajiaghaei-Keshteli, M. (2023), "Multi-objective optimization of thermophysical properties GO powders-DW/EG Nf by RSM NSGA-II, ANN, MLP and ML", Energy, 280, 128176. https://doi.org/10.1016/j.energy.2023.128176.
  57. Komurka, V.E., Wagner, A.B. and Edil, T.B. (2003), Estimating soil/pile set-up. Citeseer.
  58. Larijani, A. and Dehghani, F. (2023), "Stock price prediction using the combination of firefly (FA) and genetic algorithms", Available SSRN 4448024.
  59. Le, L.T., Nguyen, H., Zhou, J., Dou, J. and Moayedi, H. (2019), "Estimating the heating load of buildings for smart city planning using a novel artificial intelligence technique PSO-XGBoost", Appl. Sci., 9(13), 2714. https://doi.org/10.3390/app9132714.
  60. Looney, C.G. (1996), "Advances in feedforward neural networks: demystifying knowledge acquiring black boxes", IEEE Trans. Knowl. Data Eng., 8, 211-226. https://doi.org/10.1109/69.494162.
  61. Mahmoudabadi, N.S. (2020), "The study of cable behavior with two spring-dampers and one viscous damper", World, 9, 128-136.
  62. Malmir, M., Momeni, H. and Ramezani, A. (2019), "Controlling megawatt class WECS by ANFIS network trained with modified genetic algorithm", Proceedings of the 2019 27th Iranian Conference on Electrical Engineering (ICEE).
  63. McVay, M.C., Schmertmann, J., Townsend, F. and Bullock, P. (1999), "Pile friction freeze: a field investigation study", Res Rep No WPI 510632.
  64. Mirjalili, S. (2016), "SCA: A sine cosine algorithm for solving optimization problems", Knowledge-Based Syst., 96, 120-133. https://doi.org/10.1016/j.knosys.2015.12.022.
  65. Mojumder, M.A.H. (2020), Evaluation of undrained shear strength of soil, ultimate pile capacity and pile set-up parameter from cone penetration test (CPT) using artificial neural network (ANN), Louisiana State University and Agricultural & Mechanical College.
  66. Moqadam, R., Loghmani, N., Mansoori, M.S. and Allahverdy, A. (2022), "Combination of classifiers to detect grade of glioblastoma using MRS", Proceedings of the 2022 30th International Conference on Electrical Engineering (ICEE).
  67. Moshtaghi Largani, S. and Lee, S. (2023), "Efficient sampling for big provenance", Proceedings of the ACM Web Conference 2023.
  68. Motie, M., Bemani, A. and Soltanmohammadi, R. (2018), "On the estimation of phase behavior of CO2-based binary systems using ANFIS optimized by GA algorithm", Proceedings of the 5th CO2 Geological Storage Workshop. European Association of Geoscientists & Engineers.
  69. Murdoch, L.C., DeWolf, S., Germanovich, L.N., Moysey, S., Hanna, A., Roudini, S. and Moak, R. (2023a), "Using the shallow strain tensor to characterize deep geologic reservoirs", Water Resour. Res., 59(2), e2022WR032920. https://doi.org/10.1029/2022WR032920.
  70. Murdoch, L.C., Germanovich, L.N., Roudini, S., DeWolf, S.J., Hua, L. and Moak, R.W. (2021), "A type-curve approach for evaluating aquifer properties by interpreting shallow strain measured during well tests", Water Resour. Res., 57(9), e2021WR029613. https://doi.org/10.1029/2021WR029613.
  71. Murdoch, L.C., Germanovich, L.N., Slack, W.W., Carbajales-Dale, M., Knight, D., Moak, R., Laffaille, C., DeWolf, D. and Roudini, S. (2023b), "Shallow geologic storage of carbon to remove atmospheric CO2 and reduce flood risk", Environ. Sci. Technol., 57(23), 8536-8547. https://doi.org/10.1021/acs.est.3c00600.
  72. Nazoktabar, M., Zahedinejad, M, Heydari, P. and Asgharpour, A.R. (2014), "Fabrication and optical characterization of silicon nanostructure arrays by laser interference lithography and metal-assisted chemical etching.
  73. Ng, K.W., Suleiman, M.T. and Sritharan, S. (2013), "Pile setup in cohesive soil. II: Analytical quantifications and design recommendations", J. Geotech. Geoenviron. Eng., 139(2), 210-222. https://doi.org/10.1061/(ASCE)GT.1943-5606.000075.
  74. Paikowsky, S.G. and Chernauskas, L.R. (1992), "Energy approach for capacity evaluation of driven piles", Proceedings of the 4th International Conference on the Application of Stress-Wave Theory to Piles, The Hague, Netherlands.
  75. Premkumar, M., Jangir, P., Kumar, B.S., Sowmya, R., Alhelou, H.H., Abualigah, L. and Yild, A.R. (2021), "A new arithmetic optimization algorithm for solving real-world multiobjective CEC-2021 constrained optimization problems: diversity analysis and validations", IEEE Access, 9, 84263-84295. https://doi.org/10.1109/ACCESS.2021.3085529.
  76. Rashidi Nasab, A. and Elzarka, H. (2023), "Optimizing machine learning algorithms for improving prediction of bridge deck deterioration: A case study of Ohio Bridges", Buildings, 13(6), 1517. https://doi.org/10.3390/buildings13061517.
  77. Reihanisaransari, R., Samadifam, F., Salameh, A.A., Mohammadiazar, M., Amiri, N. and hannumsin, S. (2022), "Reliability characterization of solder joints in electronic systems through a neural network aided approach", IEEE Access, 10, 123757-123768. https://doi.org/10.1109/ACCESS.2022.3224008.
  78. Richardson, B.D. (2011), A case study on pile relaxation in dilative silts, University of Rhode Island.
  79. Rosti, F. and Abu-Farsakh, M. (2015), "Numerical simulation of pile installation and setup for bayou lacassine site", IFCEE 2015. 1152-1161.
  80. Roudini, S., Murdoch, L.C., DeWolf, S. and Germanovich, L.N. (2020), "Interpretation of borehole strain measurements using surrogate modeling-based optimization", AGU Fall Meeting Abstracts. H036-0008.
  81. Sadeghi, F., Larijani, A., Rostami, O., Martin, D. and Hajirahimi, P. (2023), "A novel multi-objective binary chimp optimization algorithm for optimal feature selection: Application of deep-learning-based approaches for SAR image classification", Sensors, 23(3), 1180. https://doi.org/10.3390/s23031180.
  82. Sadeghi, S., Marjani, T., Hassani, A. and Moreno, J. (2022), "Development of optimal stock portfolio selection model in the tehran stock exchange by employing markowitz mean-semivariance model", J, Financ. Issues, 20, 47-71. https://doi.org/10.58886/jfi.v20i1.3061
  83. Sarkhani Benemaran, R., Esmaeili-Falak, M. and Javadi, A. (2022), "Predicting resilient modulus of flexible pavement foundation using extreme gradient boosting based optimised models", Int. J. Pavement Eng., 1-20. https://doi.org/10.1080/10298436.2022.2095385.
  84. Schmertmann, J.H. (1991), "The mechanical aging of soils", J. Geotech. Eng., 117(9),1288-1330. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:9(1288).
  85. Shakouri Mahmoudabadi, N. (2021), "The use of viscous dampers for retrofitting of reinforced concrete frames", Turkish J. Comput. Math. Educ., 12, 7739-7744.
  86. Shi, X., Yu, X. and Esmaeili-Falak, M. (2023), "Improved arithmetic optimization algorithm and its application to carbon fiber reinforced polymer-steel bond strength estimation", Compos. Struct., 306, 116599. https://doi.org/10.1016/j.compstruct.2022.116599.
  87. Shi, Y. and Eberhart, R.C. (1998), "Parameter selection in particle swarm optimization BT - Evolutionary Programming VII. (Eds., Porto, V.W., Saravanan, N., Waagen, D., Eiben, A.E.), Springer Berlin Heidelberg, Berlin, Heidelberg, 591-600.
  88. Singh, G., Singh, B. and Kaur, M. (2019), "Grasshopper optimization algorithm-based approach for the optimization of ensemble classifier and feature selection to classify epileptic EEG signals", Med. Biol. Eng. Comput., 57, 1323-1339. https://doi.org/10.1007/s11517-019-01951-w.
  89. Skov, R. and Denver, H. (1988), "Time-dependence of bearing capacity of piles", Proceedings of the 3rd International Conference on the Application of Stress-Wave Theory to Piles, Ottawa.
  90. Stone, M. (1974), "Cross-validatory choice and assessment of statistical predictions", J. R. Stat. Soc. Ser B, 36, 111-147. https://doi.org/10.1111/j.2517-6161.1974.tb00994.x
  91. Sun, D., Shi, S., Wen, H., Xu, J., Zhou, X. and Wu, J. (2021a), "A hybrid optimization method of factor screening predicated on GeoDetector and Random Forest for Landslide Susceptibility Mapping", Geomorphology, 379, 107623. https://doi.org/10.1016/j.geomorph.2021.107623
  92. Sun, D., Wen, H., Wang, D. and Xu, J. (2020), "A random forest model of landslide susceptibility mapping based on hyperparameter optimization using Bayes algorithm", Geomorphology, 362, 107201. https://doi.org/10.1016/j.geomorph.2020.107201.
  93. Sun, D., Xu, J., Wen, H. and Wang, D. (2021b), "Assessment of landslide susceptibility mapping based on Bayesian hyperparameter optimization: A comparison between logistic regression and random forest", Eng. Geol., 281, 105972. https://doi.org/10.1016/j.enggeo.2020.105972.
  94. Svinkin, M.R., Morgano, C.M. and Morvant, M. (1994), "Pile capacity as a function of time in clayey and sandy soils", Proceedings of the Deep Foundations Institute Fifth International Conference and Exhibition on Piling and Deep Foundations.
  95. Trelea, I.C. (2003), "The particle swarm optimization algorithm: convergence analysis and parameter selection", Inf. Process Lett., 85, 317-325. https://doi.org/10.1016/S0020-0190(02)00447-7.
  96. Wang, S.T. and Reese, L.C. (1989), "Predictions of response of piles to axial loading", Predicted and Observed Axial Behavior of Piles: Results of a Pile Prediction SymposiumASCE, 173-187.
  97. Xue, X. (2018), "Evaluation of concrete compressive strength based on an improved PSO-LSSVM model", Comput. Concrete, 21(5), 505-511. https://doi.org/10.12989/cac.2018.21.5.505.
  98. Yang, M., Tao, B., Chen C., Jia, W. and Sun, S. (2019), "Machine learning models based on molecular fingerprints and an extreme gradient boosting method lead to the discovery of JAK2 inhibitors", J. Chem. Inf. Model., 59, 5002-5012. https://doi.org/10.1021/acs.jcim.9b00798
  99. Zakariazadeh, A. (2022), "Smart meter data classification using optimized random forest algorithm", ISA Trans., 126, 361-369. https://doi.org/10.1016/j.isatra.2021.07.051.
  100. Zhang, P., Yin, Z.Y. Jin, Y.F. and Chan, T.H.T. (2020), "A novel hybrid surrogate intelligent model for creep index prediction based on particle swarm optimization and random forest", Eng. Geol., 265, 105328.
  101. Zhang, W., Wu, C., Zhong, H., Li, Y. and Wang, L. (2021), "Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization", Geosci. Front., 12, 469-477. https://doi.org/10.1016/j.gsf.2020.03.007.
  102. Zhao, Z., Chen, S., Zhang, D., Peng, B., Li, X. and Zheng, Q. (2022), "Utilizing the GOA-RF hybrid model, predicting the CPT-based pile set-up parameters", Geomech. Eng., 31(1), 113-127. https://doi.org/10.12989/gae.2022.31.1.113
  103. Zhou, J., Li, E., Yang, S., Wang, M., Shi, X., Yao, S. and Mitri, H.S. (2019), "Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories", Saf. Sci., 118, 505-518. https://doi.org/10.1016/j.ssci.2019.05.046.