DOI QR코드

DOI QR Code

Estimation of Cerchar abrasivity index based on rock strength and petrological characteristics using linear regression and machine learning

선형회귀분석과 머신러닝을 이용한 암석의 강도 및 암석학적 특징 기반 세르샤 마모지수 추정

  • Ju-Pyo Hong (Dept. of Integrated Energy and Infra System, Kangwon National University) ;
  • Yun Seong Kang (Dept. of Integrated Energy and Infra System, Kangwon National University) ;
  • Tae Young Ko (Dept. of Energy and Resources Engineering, Kangwon National University)
  • 홍주표 (강원대학교 에너지.인프라 융합학과) ;
  • 강윤성 (강원대학교 에너지.인프라 융합학과) ;
  • 고태영 (강원대학교 에너지자원.산업공학부)
  • Received : 2023.12.27
  • Accepted : 2024.01.19
  • Published : 2024.01.31

Abstract

Tunnel Boring Machines (TBM) use multiple disc cutters to excavate tunnels through rock. These cutters wear out due to continuous contact and friction with the rock, leading to decreased cutting efficiency and reduced excavation performance. The rock's abrasivity significantly affects cutter wear, with highly abrasive rocks causing more wear and reducing the cutter's lifespan. The Cerchar Abrasivity Index (CAI) is a key indicator for assessing rock abrasivity, essential for predicting disc cutter life and performance. This study aims to develop a new method for effectively estimating CAI using rock strength, petrological characteristics, linear regression, and machine learning. A database including CAI, uniaxial compressive strength, Brazilian tensile strength, and equivalent quartz content was created, with additional derived variables. Variables for multiple linear regression were selected considering statistical significance and multicollinearity, while machine learning model inputs were chosen based on variable importance. Among the machine learning prediction models, the Gradient Boosting model showed the highest predictive performance. Finally, the predictive performance of the multiple linear regression analysis and the Gradient Boosting model derived in this study were compared with the CAI prediction models of previous studies to validate the results of this research.

TBM (Tunnel boring machine)은 터널 굴착 과정에서 여러 디스크 커터를 이용하여 암석을 절삭한다. 디스크 커터는 암석과의 지속적인 접촉과 마찰로 인해 마모된다. 디스크 커터의 표면이 마모되면 절삭 능력이 감소하고 굴착 효율이 떨어진다. 암석의 마모성은 디스크 커터 마모에 큰 영향을 미친다. 높은 마모도를 가진 암석은 커터에 더 큰 마모를 일으키며, 이는 디스크 커터의 수명을 단축시킨다. 세르샤 마모지수(Cerchar abrasivity index, CAI)는 암석의 마모성을 평가하는데 널리 사용되는 지표로 CAI는 암석의 마모특성을 나타내며, 디스크 커터의 수명과 성능 예측에 필수적인 요소로 인식되고 있다. 본 연구의 목적은 암석의 강도, 암석학적 특성과 선형회귀, 머신러닝 기법을 이용하여 CAI를 효과적으로 추정하는 새로운 방법을 개발하는 것이다. 문헌 조사를 통해 CAI, 일축압축강도, 압열인장강도, 등가석영함량이 포함된 데이터베이스를 구축하고 파생변수를 추가하였다. 통계적 유의성과 다중공선성을 고려하여 다중선형회귀분석을 위한 입력변수를 선정하였고, 머신러닝 모델의 입력변수는 변수중요도 분석을 통해 선정하였다. 머신러닝 예측모델 중 Gradient Boosting 모델의 예측 성능이 가장 높게 나타나 최적의 CAI 예측 모델로 선정되었다. 마지막으로 본 연구에서 도출한 다중선형회귀분석과 Gradient Boosting 모델의 예측 성능을 선행연구들의 CAI 예측모델과 비교하여 연구 결과의 타당성을 확인하였다.

Keywords

Acknowledgement

이 논문은 2023년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. NRF-2022R1F1A1063228).

References

  1. Abu Bakar, M.Z., Majeed, Y., Rostami, J. (2016), "Effects of rock water content on CERCHAR Abrasivity Index", Wear, Vol. 368-369, pp. 132-145. https://doi.org/10.1016/j.wear.2016.09.007
  2. Alber, M. (2008), "Stress dependency of the Cerchar abrasivity index (CAI) and its effects on wear of selected rock cutting tools", Tunnelling and Underground Space Technology, Vol. 23, No. 4, pp. 351-359. https://doi.org/10.1016/j.tust.2007.05.008
  3. Altindag, R. (2003), "Correlation of specific energy with rock brittleness concepts on rock cutting", Journal of the Southern African Institute of Mining and Metallurgy, Vol. 103, No. 3, pp. 163-171.
  4. Altindag, R. (2010), "Assessment of some brittleness indexes in rock-drilling efficiency", Rock Mechanics and Rock Engineering, Vol. 43, pp. 361-370. https://doi.org/10.1007/s00603-009-0057-x
  5. Altindag, R., Sengun, N., Sarac, S., Mutluturk, M., Guney, A. (2009), "Evaluating the relations between brittleness and Cerchar abrasion index of rocks", Proceedings of the EUROCK 2009 ISRM Regional Symposium, Cavtat, Croatia, pp. 195-200.
  6. Capik, M., Yilmaz, A.O. (2017), "Correlation between Cerchar abrasivity index, rock properties, and drill bit lifetime", Arabian Journal of Geosciences, Vol. 10, pp. 1-12. https://doi.org/10.1007/s12517-016-2714-1
  7. Comakli, R. (2019), "Effects of the physico-mechanical properties of low-strength pyroclastic rocks on cutter wear of roadheaders", Wear, Vol. 428-429, pp. 205-216. https://doi.org/10.1016/j.wear.2019.03.014
  8. Hamzaban, M.T., Memarian, H., Rostami, J. (2018), "Determination of scratching energy index for Cerchar abrasion test", Journal of Mining and Environment, Vol. 9, No. 1, pp. 73-89.
  9. He, J., Li, S., Li, X., Wang, X., Guo, J. (2016), "Study on the correlations between abrasiveness and mechanical properties of rocks combining with the microstructure characteristic", Rock Mechanics and Rock Engineering, Vol. 49, pp. 2945-2951. https://doi.org/10.1007/s00603-015-0862-3
  10. Hucka, V., Das, B. (1974), "Brittleness determination of rocks by different methods", International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 11, No. 10, pp. 389-392. https://doi.org/10.1016/0148-9062(74)91109-7
  11. Jeong, H., Choi, S., Lee, S., Jeon, S. (2019), "Relationship between brittleness of rock, CAI and cutting performance of a TBM disc cutter", Proceedings of the 2019 World Congress on Advances in Structural Engineering and Mechanics, Jeju, pp. 17-21.
  12. Kadkhodaei, M.H., Ghasemi, E. (2019), "Development of a GEP model to assess CERCHAR abrasivity index of rocks based on geomechanical properties", Journal of Mining and Environment, Vol. 10, No. 4, pp. 917-928.
  13. Ko, T.Y., Kim, T.K., Son, Y., Jeon, S. (2016), "Effect of geomechanical properties on Cerchar Abrasivity Index (CAI) and its application to TBM tunnelling", Tunnelling and Underground Space Technology, Vol. 57, pp. 99-111. https://doi.org/10.1016/j.tust.2016.02.006
  14. Kwak, N.S., Ko, T.Y. (2022), "Machine learning based regression analysis for estimating Cerchar abrasivity index", Geomechanics and Engineering, Vol. 29, No. 3, pp. 219-228. https://doi.org/10.12989/GAE.2022.29.3.219
  15. Lee, S.D., Jung, H.Y., Jeon, S.W. (2012), "Determination of rock abrasiveness using Cerchar abrasiveness test", Tunnel and Underground Space, Vol. 22, No. 4, pp. 284-295. https://doi.org/10.7474/TUS.2012.22.4.284
  16. Majeed, Y., Abu Bakar, M.Z. (2019), "Effects of variation in the particle size of the rock abrasion powder and standard rotational speed on the NTNU/SINTEF abrasion value steel test", Bulletin of Engineering Geology and the Environment, Vol. 78, pp. 1537-1554. https://doi.org/10.1007/s10064-017-1211-4
  17. Majeed, Y., Abu Bakar, M.Z., Butt, I.A. (2020), "Abrasivity evaluation for wear prediction of button drill bits using geotechnical rock properties", Bulletin of Engineering Geology and the Environment, Vol. 79, pp. 767-787. https://doi.org/10.1007/s10064-019-01587-y
  18. Meng, F., Wong, L.N.Y., Zhou, H. (2021), "Rock brittleness indices and their applications to different fields of rock engineering: A review", Journal of rock mechanics and geotechnical Engineering, Vol. 13, No. 1, pp. 221-247. https://doi.org/10.1016/j.jrmge.2020.06.008
  19. Menschik, F. (2015), Analysis of performance and wear of electrical rock hammer drills, Ph.D. Thesis, Technical University of Munich, pp. 44-45.
  20. Moon, K., Yang, S.B. (2020), "Cohesion and internal friction angle estimated from Brazilian tensile strength and unconfined compressive strength of volcanic rocks in Jeju Island", Journal of the Korean Geotechnical Society, Vol. 36, No. 2, pp. 17-28. https://doi.org/10.7843/KGS.2020.36.2.17
  21. Ozdogan, M.V., Deliormanli, A.H., Yenice, H. (2018), "The correlations between the Cerchar abrasivity index and the geomechanical properties of building stones", Arabian Journal of Geosciences Vol. 11, pp. 604.
  22. Ozfirat, M.K., Yenice, H., Simsir, F., Yarali, O. (2016), "A new approach to rock brittleness and its usability at prediction of drillability", Journal of African Earth Sciences, Vol. 119, pp. 94-101. https://doi.org/10.1016/j.jafrearsci.2016.03.017
  23. Piratheepan, J., Gnanendran, C.T., Arulrajah, A. (2012), "Determination of c and φ from IDT and unconfined compression testing and numerical analysis", Journal of Materials in Civil Engineering, Vol. 24, No. 9, pp. 1153-1164. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000493
  24. Plinninger, R.J. (2010), "Hardrock abrasivity investigation using the Rock Abrasivity Index (RAI)", Proceedings of the 11th IAEG Congress, Auckland, New Zealand, pp. 3445-3452.
  25. Rostami, J., Ghasemi, A., Alavi Gharahbagh, E., Dogruoz, C., Dahl, F. (2014), "Study of dominant factors affecting Cerchar abrasivity index", Rock Mechanics and Rock Engineering, Vol. 47, pp. 1905-1919. https://doi.org/10.1007/s00603-013-0487-3
  26. Sun, Z., Zhao, H., Hong, K., Chen, K., Zhou, J., Li, F., Zhang, B., Song, F., Yang, Y., He, R. (2019), "A practical TBM cutter wear prediction model for disc cutter life and rock wear ability", Tunnelling and Underground Space Technology, Vol. 85, pp. 92-99. https://doi.org/10.1016/j.tust.2018.12.010
  27. Torrijo, F.J., Garzon-Roca, J., Company, J., Cobos, G. (2019), "Estimation of Cerchar abrasivity index of andesitic rocks in Ecuador from chemical compounds and petrographical properties using regression analyses", Bulletin of Engineering Geology and the Environment, Vol. 78, pp. 2331-2344. https://doi.org/10.1007/s10064-018-1306-6
  28. Tripathy, A., Singh, T.N., Kundu, J. (2015), "Prediction of abrasiveness index of some Indian rocks using soft computing methods", Measurement, Vol. 68, pp. 302-309. https://doi.org/10.1016/j.measurement.2015.03.009
  29. undul, O., Er, S. (2017), "Investigating the effects of micro-texture and geo-mechanical properties on the abrasiveness of volcanic rocks", Engineering Geology, Vol. 229, pp. 85-94. https://doi.org/10.1016/j.enggeo.2017.09.022