DOI QR코드

DOI QR Code

Study on slope stability of waste dump with a weak layer using finite element limit analysis method

  • Chong Chen (Ansteel Beijing Research Institute Co. Ltd.) ;
  • Huayong Lv (School of Architecture and Engineering, Shangqiu Normal University) ;
  • Jianjian Zhao (Sinosteel Co. Ltd.) ;
  • Zhanbo Cheng (School of Engineering, University of Warwick) ;
  • Huaiyuan Wang (Ansteel Beijing Research Institute Co. Ltd.) ;
  • Gao Xu (Railway Engineering Research Institute, China Academy of Railway Sciences Co. Ltd.)
  • Received : 2022.06.06
  • Accepted : 2024.01.12
  • Published : 2024.02.10

Abstract

Slope stability is generally paid more attention to in slope protection works, especially for slope containing weak layers. Two indexes of safety factor and failure model are selected to perform slope stability. Moreover, the finite element limit analysis method comprehensively combines the advantage of the limit analysis method and the finite element method obtaining the upper and lower bounds of the safety factor and the failure mode under the slope stability limit state. In this study, taking a waste dump containing a weak layer as an engineering background, the finite element limit analysis method is adopted to explore the potential failure mode. Meanwhile, the sensitivity analysis of slope stability is performed on geometrical and geotechnical parameters of the waste dump. The results show that the failure mode of the waste dump slope is two wedges if the weak layer is located on the ground surface (Model A), while the slope can be observed as three wedges failure if the weak layer is below the ground surface (Model B). In addition, both failure modes are highly sensitive to the friction angle of the weak layer and the shear strength of waste disposal, and moderately sensitive to the heap height, the dip angle and cohesion of the weak layer, while the toe cutting has limited effect on the slope stability. Moreover, the sensitivity to the excavation of the ground depends on the location of the weak layer and failure mode.

Keywords

Acknowledgement

We wish to acknowledge the financial support from the China Postdoctoral Science Foundation (Grant No. 2019M660661). The authors would also like to thank the editors and anonymous reviewers for their valuable time and suggestions.

References

  1. Bao, Y., Sun, X., Chen, J., Zhang, W., Han, X. and Zhan, J. (2019), "Stability assessment and dynamic analysis of a large iron mine waste dump in Panzhihua, Sichuan, China", Environ. Earth Sci., 78(2), 1-17. https://doi.org/10.1007/s12665-019-8043-4.
  2. Behera, P.K., Sarkar, K., Singh, A.K., Verma, A.K. and Singh, T.N. (2016), "Dump slope stability analysis-A case study", J. Geolog. Soc. India, 88(6), 725-735. https://doi.org/10.1007/s12594-016-0540-4.
  3. Beygi, M., Keshavarz, A., Abbaspour, M., Vali, R., Saberian, M. and Li, J. (2022), "Finite element limit analysis of the seismic bearing capacity of strip footing adjacent to excavation in c-φ soil", Geomech. Geoeng., 17(1), 246-259. https://doi.org/10.1080/17486025.2020.1728396.
  4. Boudiaf, K., Benmeddour, D., Baazouzi, M., Mabrouki, A. and Mellas, M. (2019), "A numerical investigation of the effect of isotropic spatially variable tensile strength on slope stability", Transp. Infrastr. Geotechnol., 6, 268-288. https://doi.org/10.1007/s40515-019-00080-z.
  5. Bracko, T., Zlender, B. and Jelusic, P. (2022), "Implementation of climate change effects on slope stability analysis", Appl. Sci., 12(16), 8171. https://doi.org/10.3390/app12168171.
  6. Chao, Z. and Chunhe, Y. (2014), "Investigation on strength criterion of coarse-grained material and stability analysis of waste dump", Rock Soil Mech., 35(3), 641-646.
  7. Chen, C. (2018), "Failure mode and stability analysis of slope dumped on soft layer", Ph.D. Dissertation, China University of Mining & Technology, Beijing, China.
  8. Chen, G.H., Zou, J.F. and Zhang, R. (2021), "Stability analysis of rock slopes using strength reduction adaptive finite element limit analysis", Struct. Eng. Mech., 79(4), 487-498. https://doi.org/10.12989/sem.2021.79.4.487.
  9. Chen, Y., Lin, H., Cao, R. and Zhang, C. (2021), "Slope stability analysis considering different contributions of shear strength parameters", Int. J. Geomech., 21(3), 04020265. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001937.
  10. Cheng, Z.B., Li, L.H. and Zhang, Y.N. (2020), "Laboratory investigation of the mechanical properties of coal-rock combined body", Bull. Eng. Geol. Environ., 79, 1947-1958. https://doi.org/10.1007/s10064-019-01613-z.
  11. Cho, Y. and Song, Y. (2014), "Deformation measurements and a stability analysis of the slope at a coal mine waste dump", Ecolog. Eng., 68, 189-199. https://doi.org/10.1016/j.ecoleng.2014.03.005.
  12. Ghadrdan, M., Dyson, A.P., Shaghaghi, T. and Tolooiyan, A. (2021), "Slope stability analysis using deterministic and probabilistic approaches for poorly defined stratigraphies", Geomech. Geophys. Geo-Energy Geo-Resour., 7, 1-17. https://doi.org/10.1007/s40948-020-00189-3.
  13. Goktepe, F. and Keskin, I. (2018), "A comparison study between traditional and finite element methods for slope stability evaluations", J. Geolog. Soc. India, 91(3), 373-379. https://doi.org/10.1007/s12594-018-0864-3.
  14. Han, L., Shu, J., Cai, Q., Jing, H. and Tian, H. (2016), "Mechanical characteristics of dip basement effects on dump stability in the Shengli open-pit mine in Inner Mongolia, China", Arab. J. Geosci., 9(20), 750. https://doi.org/10.1007/s12517-016-2774-2.
  15. Jiang, T., Shen, Z., Yang, M., Xu, L., Gan, L. and Cui, X. (2018), "A new model approach to predict the unloading rock slope displacement behavior based on monitoring data", Struct. Eng. Mech., 67(2), 105-113. https://doi.org/10.12989/sem.2018.67.2.105.
  16. Karrech, A., Dong, X., Elchalakani, M., Basarir, H., Shahin, M.A. and Regenauer-Lieb, K. (2022), "Limit analysis for the seismic stability of three-dimensional rock slopes using the generalized Hoek-Brown criterion", Int. J. Min. Sci. Technol., 32(2), 237-245. https://doi.org/10.1016/j.ijmst.2021.10.005.
  17. Khavaji, A., Ganji, D.D., Roshan, N., Moheimani, R., Hatami, M. and Hasanpour, A. (2012), "Slope variation effect on large deflection of compliant beam using analytical approach", Struct. Eng. Mech., 44(3), 405-416. https://doi.org/10.12989/sem.2012.44.3.405.
  18. Kumar, N., Verma, A.K., Sardana, S., Sarkar, K. and Singh, T.N. (2018), "Comparative analysis of limit equilibrium and numerical methods for prediction of a landslide", Bull. Eng. Geol. Environ., 77(2), 595-608. https://doi.org/10.1007/s10064-017-1183-4.
  19. Li, A.J., Mburu, J.W., Chen, C.W. and Yang, K.H. (2020), "Investigations of silty soil slopes under unsaturated conditions based on strength reduction finite element and limit analysis", KSCE J. Civil Eng., 26, 1095-1110. https://doi.org/10.1007/s12205-021-1162-y.
  20. Li, C., Su, L., Liao, H., Zhang, C. and Xiao, S. (2021), "Modeling of rapid evaluation for seismic stability of soil slope by finite element limit analysis", Comput. Geotech., 133, 104074. https://doi.org/10.1016/j.compgeo.2021.104074.
  21. Li, L., Li, C., Wen, J., Yu, G., Cheng, Y. and Xu, L. (2023), "Probabilistic seismic slope stability analysis using swarm response surfaces and rotational Newmark sliding model with primary sliding direction", Comput. Geotech., 163, 105754. https://doi.org/10.1016/j.compgeo.2023.105754.
  22. Lv, H., Cheng, Z. and Liu, F. (2021), "Study on the mechanism of a new fully mechanical mining method for extremely thick coal seam", Int. J. Rock Mech. Min. Sci., 142, 104788. https://doi.org/10.1016/j.ijrmms.2021.104788.
  23. Lv, H., Cheng, Z., Dong, Y., Zhang, J. and Ma, Y. (2021), "Numerical simulation on the crack initiation and propagation of coal with combined defects", Struct. Eng. Mech., 79(2), 237-245. https://doi.org/10.12989/sem.2021.79.2.237.
  24. Ma, Z., Liao, H., Dang, F. and Cheng, Y. (2021), "Seismic slope stability and failure process analysis using explicit finite element method", Bull. Eng. Geol. Environ., 80(2), 1287-1301. https://doi.org/10.1007/s10064-020-01989-3.
  25. Mendjel, D. and Messast, S. (2012), "Development of limit equilibrium method as optimization in slope stability analysis", Struct. Eng. Mech., 41(3), 339-348. https://doi.org/10.12989/sem.2012.41.3.339.
  26. Nguyen, V.U., Nemcik, J.A. and Chowdhury, R.N. (1984), "Some practical aspects of spoil pile stability by the two-wedge model", Min. Sci. Technol., 12(1), 57-68. https://doi.org/10.1016/S0167-9031(84)90210-X.
  27. Ozdemir, M., Beyhan, S. and Erarslan, K. (2023), "Effect of strength anisotropy on schist rocks and slope stability analysis", Bull. Eng. Geol. Environ., 82(11), 410. https://doi.org/10.1007/s10064-023-03441-8.
  28. Pain, A., Kanungo, D.P. and Sarkar, S. (2014), "Rock slope stability assessment using finite element based modellingexamples from the Indian Himalayas", Geomech. Geoeng., 9(3), 215-230. https://doi.org/10.1080/17486025.2014.883465.
  29. Peng, W., Zhao, M., Zhao, H. and Yang, C. (2022), "Seismic stability of the slope containing a laterally loaded pile by finite-element limit analysis", Int. J. Geomech., 22(1), 06021033. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002226.
  30. Poulsen, B., Khanal, M., Rao, A.M., Adhikary, D. and Balusu, R. (2014), "Mine overburden dump failure: A case study", Geotech. Geolog. Eng., 32(2), 297-309. https://doi.org/10.1007/s10706-013-9714-7.
  31. Qiu, J.K. (1987), "Review on the research of the stability of open-pit mine dump", Chem. Min. Technol., 5, 1-5.
  32. Rai, R., Kalita, S., Gupta, T. and K Shrivastva, B. (2012), "Sensitivity analysis of internal dragline dump stability: finite element analysis", Geotech. Geolog. Eng., 30(6), 1397-1404. https://doi.org/10.1007/s10706-012-9541-2.
  33. Razdolsky, A.G., Yankelevsky, D.Z. and Karinski, Y.S. (2005), "Analysis of slope stability based on evaluation of force balance", Struct. Eng. Mech., 20(3), 313-334. https://doi.org/10.12989/sem.2005.20.3.313.
  34. Richards, B.G., Coulthard, M.A. and Toh, C.T. (1981), "Analysis of slope stability at Goonyella mine", Can. Geotech. J., 18(2), 179-194. https://doi.org/10.1139/t81-023
  35. Rozanski, Z., Wrona, P., Pach, G., Niewiadomski, A.P., Markowska, M., Wrana, A., ... & de Paz Ruiz, D. (2022), "Influence of water erosion on fire hazards in a coal waste dump-A case study", Sci. Total Environ., 834, 155350. https://doi.org/10.1016/j.scitotenv.2022.155350.
  36. Sengupta, S. and Roy, I. (2015), "Study of internal dump stability of dudhichua open cast project, northern coalfields limited, India", J. Inst. Eng. (India): Ser. D, 96(1), 67-75. https://doi.org/10.1007/s40033-014-0061-5.
  37. Shang, Y., Zhang, L., Kong, D., Wang, Y. and Cheng, Z. (2023), "Overlying strata failure mechanism and gas migration law in close distance outburst coal seams: A case study", Eng. Fail. Anal., 148, 107214. https://doi.org/10.1016/j.engfailanal.2023.107214.
  38. Sloan, S.W. (2013), "Geotechnical stability analysis", Geotechniq., 63(7), 531-571. https://doi.org/10.1680/geot.12.RL.001.
  39. Steiakakis, E., Kavouridis, K. and Monopolis, D. (2009), "Large scale failure of the external waste dump at the "South Field" lignite mine, Northern Greece", Eng. Geol., 104(3-4), 269-279. https://doi.org/10.1016/j.enggeo.2008.11.008.
  40. Su, Z. and Shao, L. (2021), "A three-dimensional slope stability analysis method based on finite element method stress analysis", Eng. Geol., 280, 105910. https://doi.org/10.1016/j.enggeo.2020.105910.
  41. Wang, J. and Chen, C. (2017), "Stability analysis of slope at a disused waste dump by two-wedge model", Int. J. Min. Reclam. Environ., 31(8), 575-588. https://doi.org/10.1080/17480930.2016.1270498.
  42. Wang, Z.Y., Gu, D.M. and Zhang, W.G. (2020), "Influence of excavation schemes on slope stability: A DEM study", J. Mount. Sci., 17(6), 1509-1522. https://doi.org/10.1007/s11629-019-5605-6.
  43. Wu, G., Zhao, M., Zhang, R. and Lei, M. (2021), "Ultimate bearing capacity of strip footings on Hoek-Brown rock slopes using adaptive finite element limit analysis", Rock Mech. Rock Eng., 54(3), 1621-1628. https://doi.org/10.1007/s00603-020-02334-6.
  44. Yang, Y., Xia, Y., Zheng, H. and Liu, Z. (2021), "Investigation of rock slope stability using a 3D nonlinear strength-reduction numerical manifold method", Eng. Geol., 292, 106285. https://doi.org/10.1016/j.enggeo.2021.106285.
  45. Yonli, H.F., Francois, B., Toguyeni, D.Y.K. and Pantet, A. (2022), "Hydro-mechanical behavior of two clayey soils in presence of household waste leachates", Glob. J. Environ. Sci. Manage., 8(2), 169-182. https://doi.org/10.22034/GJESM.2022.02.02.
  46. Zhang, W., Li, H., Han, L., Chen, L. and Wang, L. (2022), "Slope stability prediction using ensemble learning techniques: A case study in Yunyang County, Chongqing, China", J. Rock Mech. Geotech. Eng., 14(4), 1089-1099. https://doi.org/10.1016/j.jrmge.2021.12.011.
  47. Zhang, W.G., Meng, F.S., Chen, F.Y. and Liu, H.L. (2021), "Effects of spatial variability of weak layer and seismic randomness on rock slope stability and reliability analysis", Soil Dyn. Earthq. Eng., 146, 106735. https://doi.org/10.1016/j.soildyn.2021.106735.
  48. Zhang, Y. (2000), "Causes of instability of dump of Jinniu Mining Co.", Nonferrous Metals (Mining Section), (03), 34-36.
  49. Zhao, B., Yuan, L., Geng, X., Su, L., Qian, J., Wu, H., Liu, M. and Li, J. (2022), "Deformation characteristics of a large landslide reactivated by human activity in Wanyuan city, Sichuan Province, China", Landslid., 19(5), 1131-1141. https://doi.org/10.1007/s10346-022-01853-3.
  50. Zu, G.L. (1989), "Experimental study on landslide mechanism model of inclined soft base dump", Surf. Min., 1, 21-25.