Acknowledgement
이 연구는 금오공과대학교 대학 학술연구비로 지원되었음(2022년)
References
- W. Wei and L. Liu, "Gradient Leakage Attack Resilient Deep Learning," IEEE Transactions on Information Forensics and Security, Vol. 17, pp. 303-316,2022(DOI:10.1109/TIFS.2021.3139777)
- N. Bugshan, I. Khalil, M. S. Rahman, M. Atiquzzaman;X. Yi, S. Badsha, "Toward Trustworthy and Privacy-Preserving Federated Deep Learning Service Framework for Industrial Internet of Things," IEEE Transactions on Industrial Informatics, Vol. 19, No.2 pp. 1535-1547,2023(DOI: 10.1109/TII.2022.3209200)
- D. Mistry, M. F. Mridha, Me. Safran, S. Alfarhood, A. K. Saha, D. Che, "Privacy-Preserving On-Screen Activity Tracking and Classification in E-Learning Using Federated Learning," IEEE Access, Vol. 11, pp. 79315-79329, 2023(DOI: 10.1109/ACCESS.2023.3299331)
- I. Fontana, M. Langheinrich, M. Gjoreski, "GANs for Privacy-Aware Mobility Modeling," IEEE Access, Vol. 11, pp. 29250-29262, 2023(DOI:10.1109/ACCESS.2023.3260981)
- R. Podschwadt, D. Takabi, P. Hu, M. H. Rafiei, Z. Cai, "A Survey of Deep Learning Architectures for Privacy-Preserving Machine Learning With Fully Homomorphic Encryption," IEEE Access, Vol. 10, pp.117477-117500,2022(DOI:10.1109/ACCESS.2022.3219049)
- T. Zhang, T. Zhu, K. Gao, W. Zhou, P. S. Yu, "Balancing Learning Model Privacy, Fairness, and Accuracy With Early Stopping Criteria," IEEE Transactions on Neural Networks and Learning Systems, Vol. 34, No.9, pp.5557-5569,2023(DOI: 10.1109/TNNLS.2021.3129592)
- V. Stephanie, I. Khalil, M. S. Rahman, M. Atiquzzaman, "Privacy-Preserving Ensemble Infused Enhanced Deep Neural Network Framework for Edge Cloud Convergence," IEEE Internet of Things Journal, Vol. 10, No.5, pp.3763-3773,2023(DOI: 10.1109/JIOT.2022.3151982)
- M. Shateri, F. Messina, P. Piantanida, F. Labeau, "Privacy-Cost Management in Smart Meters With Mutual-Information-BasedReinforcement Learning," IEEE Internet of Things Journal, Vol. 9, No.22,pp.22389-22398,2022(DOI:10.1109/JIOT.2021.3128488)
- T. Zhu, D. Ye, W. Wang, W. Zhou, P. S. Yu, "More Than Privacy: Applying Differential Privacy in Key Areas of Artificial Intelligence," IEEE Transactions on Knowledge and Data Engineering, Vol. 34, No. 6,pp.2824-2843,2022(DOI:10.1109/TKDE.2020.3014246)
- Z. Wu, H. Wang, Z. Wang, H. Jin, Z. Wang, "Privacy-Preserving Deep Action Recognition: An Adversarial Learning Framework and A New Dataset," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 44, No. 4, pp. 2126-2139,2022(DOI: 10.1109/TPAMI.2020.3026709)
- L. Xiang, W. Li, J. Yang, X. Wang, B. Li, "Differentially-Private Deep Learning With Directional Noise," IEEE Transactions on Mobile Computing, Vol. 22, No. 5, pp. 2599-2612,2023(DOI:10.1109/TMC.2021.3130060)
- A. E. Ouadrhiri, A. Abdelhadi, "Differential Privacy for Deep and Federated Learning: A Survey," IEEE Access, Vol. 10, pp. 22359-22380,2022(DOI:10.1109/ACCESS.2022.3151670)
- R. Parekh, N. Patel, R. Gupta, N. K. Jadav, S. Tanwar, A. Alharbi, A. Tolba, B.-C. Neagu, M. S. Raboaca, "GeFL: Gradient Encryption-Aided Privacy Preserved Federated Learning for Autonomous Vehicles," IEEE Access, Vol. 11, pp. 1825-1839,2023(DOI:10.1109/ACCESS.2023.3233983)
- W. Zhang, B. Jiang, M. Li, X. Lin, "Privacy-Preserving Aggregate Mobility Data Release: An Information-Theoretic Deep Reinforcement Learning Approach," IEEE Transactions on Information Forensics and Security, Vol. 17, pp. 849-864, 2022(DOI:10.1109/TIFS.2022.3152361)
- X. Ma, Q. Jiang, X. Liu, Q. Pei, J. Ma, W. Lou "Learning in Your "Pocket": Secure Collaborative Deep Learning With Membership Privacy," IEEE Transactions on Dependable and Secure Computing, Vol. 20, No.3, pp. 2641-2656, 2023(DOI:10.1109/TDSC.2022.3192326)
- H.-K. Ko, "Privacy Preserving Techniques for Deep Learning in Multi-Party System," The Journal of the Convergence on Culture Technology (JCCT), Vol. 9, No.3, pp. 647-654, 2023(DOI: http://dx.doi.org/10.17703/JCCT.2023.9.3.647)
- K. KIM, S.-H. Lee, "Development of CNN-Transformer Hybrid Model for Odor Analysis," International Journal of Advanced Culture Technology, Vol. 11, No.3, pp. 297-301, 2023(DOI:https://doi.org/10.17703/IJACT.2023.11.3.297)