DOI QR코드

DOI QR Code

Development of Uniform Ag Electrode and Heating Sensors Using Inkjet Printing Technology

잉크젯 프린팅 기술을 이용한 Ag 전극 균일성 및 발열 센서 연구

  • Gun Woong Kim (Department of Semiconductor Engineering, Gyeongsang National University) ;
  • Jaebum Jeong (Department of Semiconductor Engineering, Gyeongsang National University) ;
  • Jin Ho Park (Department of Semiconductor Engineering, Gyeongsang National University) ;
  • Woo Jin Jeong (Department of Semiconductor Engineering, Gyeongsang National University) ;
  • Jun Young Kim (Department of Semiconductor Engineering, Gyeongsang National University)
  • 김건웅 (경상국립대학교 반도체공학과) ;
  • 정재범 (경상국립대학교 반도체공학과) ;
  • 박진호 (경상국립대학교 반도체공학과) ;
  • 정우진 (경상국립대학교 반도체공학과) ;
  • 김준영 (경상국립대학교 반도체공학과)
  • Received : 2024.01.02
  • Accepted : 2024.01.18
  • Published : 2024.01.31

Abstract

Inkjet printing technology is used to mass-produce displays and electrochemical sensors by dropping tens of pico-liters or less of specific-purpose ink through nozzles, just as ink is sprayed and printed on paper. Unlike the deposition method for vaporizing material in a vacuum, inkjet printing technology can be used for processing even under general atmospheric pressure and has a cost advantage because the material is dissolved in a solvent and used in the form of ink. In addition, because it can only be printed on the desired part, masks are not required. However, a technical shortcoming is the difficulty for commercialization, such as uniformity for forming the thickness and coffee ring effect. As sizes of devices decrease, the need to print electrodes with precision, thinness, and uniformity increases. In this study, we improved the printing and processing conditions to form a homogeneous electrode using Ag ink (DGP-45LT-15C) and applied this for patterning to fabricate a heat sensor. Upon the application of voltage to the heat sensor, the model with an extended width exhibited superior heat performance. However, in terms of sheet resistance, the model yielded an equivalent value of 21.6 Ω/□ compared to the ITO.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구이다(No. 2022 R1F1A1074746, RS-2023-00222166). 또한 SDC-경상국립대학교 산학협력 센터 과제의 지원을 받아 수행한 연구이다.

References

  1. H. Kudo, T. Sawada, E. Kazawa, H. Yoshida, Y. Iwasaki, and K. Mitsubayashi, "A flexible and wearable glucose sensor based on functional polymers with Soft-MEMS techniques", Biosens. Bioelectron., Vol. 22, No. 4, pp. 558-562, 2006. https://doi.org/10.1016/j.bios.2006.05.006
  2. I. Manunza, A. Sulis, and A. Bonfiglio, "Organic semiconductor field effect transistors for unconventional applications: flexible sensors and wearable devices", Proc. of International Workshop on Wearable and Implantable Body Sensor Networks, pp. 3-5, Cambridge, USA, 2006.
  3. H. Takao, M. Miyasak, H. Hara, A. Miyazaki, T. Kodaira, S. W. B. Tam, S. Inoue, and T. Shimoda, "Flexible semiconductor devices: Fingerprint sensor and electrophoretic display on plastic", Proc. of IEEE conf. on the 34th European Solid-State Device Research, pp. 309-312, Leuven, Belgium, 2004.
  4. L. F. Thompson, "An Introduction to Lithography", American chemical society, Vol. 1, pp1-13, 1983. https://doi.org/10.1021/bk-1983-0219.ch001
  5. K. Jain, M. Klosner, M. Zemel, and S. Raghunandan, "Flexible Electronics and Displays: High-Resolution, Roll-to-Roll, Projection Lithography and Photoablation Processing Technologies for High-Throughput Production", Proc. IEEE, Vol. 93, No. 8, pp. 1500-1510, 2005. https://doi.org/10.1109/JPROC.2005.851505
  6. J. P. Metters, R. O. Kadara, and C. E. Banks, "New directions in screen printed electroanalytical sensors: an overview of recent developments", The Royal Society of Chemistry, Vol. 136, pp. 1067-1076, 2011.
  7. G. F. Trindade, F. Wang, J. Im, Y. He, A. Balogh, D. Scurr, I. Gilmore, M. Tiddia, E. Saleh, D. Pervan, L. Turyanska, C. J. Tuck, R. Wildman, R. Hague, and C. J. Roberts, "Residual polymer stabiliser causes anisotropic electrical conductivity during inkjet printing of metal nanoparticles", Commun. Mater., Vol. 2, No. 47, pp. 1-10, 2021. https://doi.org/10.1038/s43246-020-00110-1
  8. C. W. Sele, T. Von Werne, R. H. Friend, and H. Sirringhaus, "Lithography-Free, Self-Aligned Inkjet Printing with Sub-Hundred-Nanometer Resolution", Adv. Mater., Vol. 17, No. 8, pp. 997-1001, 2005. https://doi.org/10.1002/adma.200401285
  9. S. Khan, L. Lorenzelli, and R. S. Dahiya, "Technologies for Printing Sensors and Electronics Over Large Flexible Substrates: A Review", IEEE Sens. J., Vol. 15, No. 6, pp. 3164-3185, 2015. https://doi.org/10.1109/JSEN.2014.2375203
  10. O. Kiefer and J. Breitkreutz, "Comparative investigations on key factors and print head designs for pharmaceutical inkjet printing", Int. J. Pharm., Vol. 586, pp. 119561(1)-119561(11), 2020.
  11. A. Kosmala, R. Wright, Q. Zhang, and P. Kirby, "Synthesis of silver nano particles and fabrication of aqueous Ag inks for inkjet printing", Mater. Chem. Phys., Vol. 129, No. 3, pp. 1075-1080, 2011. https://doi.org/10.1016/j.matchemphys.2011.05.064
  12. D. Soltman and V. Subramanian, "Inkjet-Printed Line Morphologies and Temperature Control of the Coffee Ring Effect", Langmuir, Vol. 24, No. 5, pp. 2224-2231, 2011.
  13. Herman Wijshoff, "The dynamics of the piezo inkjet printhead operation", Phys. Rep., Vol. 491, No. 4-5, pp. 77-177, 2010. https://doi.org/10.1016/j.physrep.2010.03.003
  14. C. Kim, J. H. Park, J. Ko, S. Lee, R. G. Kwon, S. Lee, H. Lee, J. Y. Kim, and H.-J. Song, "Room temperature processed protective layer for printed silver electrodes", RSC Adv., Vol. 13, No. 30, pp. 20557-20564, 2023.
  15. Y. Zhao, X. Liu, D. Y. Lei, and Y. Chai, "Effects of surface roughness of Ag thin films on surface-enhanced Raman spectroscopy of graphene: spatial nonlocality and physisorption strain", Nanoscale, Vol. 6 pp. 1311-1317, 2014. https://doi.org/10.1039/C3NR05303B
  16. R. Tao, Z. Fang, J. Zhang, H. Ning, J. Chen, C. Yang, Y. Zhou, R. Yao, Y. Song, and J. Peng, "Capillary force induced air film for self-aligned short channel: pushing the limits of inkjet printing", Soft Matter, Vol. 14, No. 46, pp. 9402-9410, 2018. https://doi.org/10.1039/C8SM01984C
  17. M. Singh, H. M. Haverinen, P. Dhagat, and G. E. Jabbour, "Inkjet Printing-Process and Its Applications", Adv. Mater., Vol. 22, No. 6, pp. 673-685, 2010. https://doi.org/10.1002/adma.200901141
  18. H. Hu and R. G. Larson, "Analysis of the Microfluid Flow in an Evaporating Sessile Droplet", Langmuir, Vol. 21, No. 9, pp. 3963-3971, 2005. https://doi.org/10.1021/la047528s
  19. E. Mayoral and A. G. Goicochea, "Modeling the temperature dependent interfacial tension between organic solvents and water using dissipative particle dynamics", J. Chem. Phys., Vol. 138, No. 9, pp. 094703(1)-094703(7), 2013.
  20. E. Halonen, T. Viiru, K. Ostman, A. L. Cabezas, and M. Mantysalo, "Oven Sintering Process Optimization for Inkjet-Printed Ag Nanoparticle Ink", IEEE Trans. Compon. Packaging. Manuf. Technol., Vol. 3, No. 2, pp. 350-356, 2013. https://doi.org/10.1109/TCPMT.2012.2226458
  21. Q. Huang, K. N. Al-Milaji, and H. Zhao, "Inkjet Printing of Silver Nanowires for Stretchable Heaters", ACS Appl. Nano Mater., Vol. 1, No. 9, pp. 4528-4536, 2018.
  22. D. Barmpakos, V. Belessi, N. Xanthopoulos, C. A. Krontiras, and G. Kaltsas, "Flexible Inkjet-Printed Heaters Utilizing Graphene-Based Inks", Sensors, Vol. 22, No. 3, pp. 1173(1)-1173(10), 2022. https://doi.org/10.1109/JSEN.2021.3136033
  23. N. Zhang, C. Huang, S. Wan, L. Kang, M. Hu, Y. Zhang, X. Wu, and J. Zhang, "A Novel Flexible Silver Heater Fabricated by a Solution-Based Polyimide Metalization and Inkjet-Printed Carbon Masking Technique", ACS Appl. Electron. Mater., Vol. 1, No. 6, pp. 928-935, 2019. https://doi.org/10.1021/acsaelm.9b00109
  24. D. Erickson, D. Sinton, and D. Li, "Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems", Lab. Chip, Vol. 3, pp. 141-149, 2003. https://doi.org/10.1039/b306158b
  25. H. I. Mohammed, P. Talebizadehsardari, J. M. Mahdi, A. Arshad, A. Sciacovelli, and D. Giddings, "Improved melting of latent heat storage via porous medium and uniform Joule heat generation", J. Energy Storage, Vol. 31, pp. 101747(1)-101747(11), 2003. https://doi.org/10.1016/j.est.2020.101747
  26. K. Kim, B. Lee, J. H. Park, J.-H. Park, K. J. Lee, T. J. Kwak, T. Son, Y.-B. Shin, H. Im, and M.-G. Kim, "Rapid PCR kit: lateral flow paper strip with Joule heater for SARS-CoV-2 detection", Mater. Horiz., Vol. 10, pp. 1697-1704, 2023. https://doi.org/10.1039/D2MH01267G
  27. R. Xu, B. Sun, X. Han, W. Hong, J. Xu, H. Zhu, Z. Fu, Y. Xu, X. Sun, and K. Qian, "High-Performance Flexible Transparent Electrical Heater Based on a robust Ordered Ag Nanowire Micromesh Conductor", ACS Appl. Electron. Mater., Vol. 4, pp. 1776-1783, 2022. https://doi.org/10.1021/acsaelm.2c00029