Acknowledgement
이 논문은 2022학년도 제주대학교 교원성과지원사업에 의하여 연구되었습니다.
References
- Brunton, S. L., Noack, B. R. and Koumoutsakos, P., "Machine Learning for Fluid Mechanics," Annu. Rev. Fluid Mech., 52, 477-508(2020). https://doi.org/10.1146/annurev-fluid-010719-060214
- Ghavipour, M., Ghavipour, M., Chitsazan, M., Najibi, S. H. and Ghidary, S. S., "Experimental Study of Natural Gas Hydrates and a Novel Use of Neural Network to Predict Hydrate Formation Conditions," Chemical Engineering Research and Design, 91, 264-273(2013). https://doi.org/10.1016/j.cherd.2012.08.010
- Landgrebe, M. K. B. and Nkazi, D., "Toward a Robust, Universal Predictor of Gas Hydrate Equilibria by Means of a Deep Learning Regression," ACS Omega, 4, 22399-22417(2019). https://doi.org/10.1021/acsomega.9b02961
- Poort, J. P., Ramdin, M., van Kranendonk, J. and Vlugt, T. J. H., "Solving Vapor-liquid Flash Problems Using Artificial Neural Networks," Fluid Phase Equilibria, 490, 39-47(2019). https://doi.org/10.1016/j.fluid.2019.02.023
- Sun, G. et al., "Vapor-liquid Phase Equilibria Behavior Prediction of Binary Mixtures Using Machine Learning," Chemical Engineering Science, 282, 119358(2023).
- Hamilton, S. J. and Hauptmann, A., "Deep D-Bar: Real-Time Electrical Impedance Tomography Imaging With Deep Neural Networks," IEEE Transactions on Medical Imaging, 37, 2367-2377(2018). https://doi.org/10.1109/TMI.2018.2828303
- Kwon, O., Leejieun, Hwan, K. J., Seongjun, L. and Yoo, S. K., "Design of Deep De-nosing Network for Power Line Artifact in Electrocardiogram," Journal of Korea Multimedia Society, 23, 402-411(2020). https://doi.org/10.9717/KMMS.2020.23.3.402
- Badar, M., Haris, M. and Fatima, A., "Application of Deep Learning for Retinal Image Analysis: A Review," Computer Science Review, 35, 100203(2020).
- Zhang, J. et al. in 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring). 1-5.
- Li, Y. and Ma, Z., "Deep Learning-based Noise Reduction for Seismic Data," Journal of Physics: Conference Series, 1861, 012011(2021).
- Hong, H., Hong, Q., Liu, J., Tong, W. and Shi, L., "Estimating Relative Noise to Signal in DNA Microarray Data," International Journal of Bioinformatics Research and Applications, 9, 433-448(2013). https://doi.org/10.1504/IJBRA.2013.056085
- Sorkhi, M., Jahed-Motlagh, M. R., Minaei-Bidgoli, B. and Daliri, M. R., "Hybrid Fuzzy Deep Neural Network Toward Temporalspatial-frequency Features Learning of Motor Imagery Signals," Sci. Rep., 12, 22334(2022).
- C, A. et al., "Noise Reduction in CT Images Using a Selective Mean Filter," Journal of Biomedical Physics & Engineering, 10, 623-634(2020).
- Huang, T., Yang, G. and Tang, G., "A Fast Two-dimensional Median Filtering Algorithm," IEEE Transactions on Acoustics, Speech, and Signal Processing, 27, 13-18(1979). https://doi.org/10.1109/TASSP.1979.1163188
- Haddad, R. A. and Akansu, A. N., "A Class of Fast Gaussian Binomial Filters for Speech and Image Processing," IEEE Transactions on Signal Processing, 39, 723-727(1991). https://doi.org/10.1109/78.80892
- Lee, H., "Analysis of Preconcentration Dynamics inside Dead-end Microchannel," Korean Chem. Eng. Res., 61, 155-161(2023).
- Kim, S. J., Wang, Y.-C., Lee, J. H., Jang, H. and Han, J., "Concentration Polarization and Nonlinear Electrokinetic Flow near a Nanofluidic Channel," Phys. Rev. Lett., 99, 044501(2007).
- Kim, S. J., Li, L. D. and Han, J., "Amplified Electrokinetic Response by Concentration Polarization near Nanofluidic Channel," Langmuir, 25, 7759-7765(2009). https://doi.org/10.1021/la900332v
- Kim, J., Kim, H.-Y., Lee, H. and Kim, S. J., "Pseudo 1-D Micro/Nanofluidic Device for Exact Electrokinetic Responses," Langmuir, 32, 6478-6485(2016). https://doi.org/10.1021/acs.langmuir.6b01178
- Choi, J. et al., "Selective Preconcentration and Online Collection of Charged Molecules Using Ion Concentration Polarization," RSC Adv., 5, 66178-66184(2015).
- Choi, J. et al., "Nanoelectrokinetic Selective Preconcentration Based on Ion Concentration Polarization," BIOCHIP J., 14, 100-109(2020). https://doi.org/10.1007/s13206-020-4109-3
- Kim, J., Cho, I., Lee, H. and Kim, S. J., "Ion Concentration Polarization by Bifurcated Current Path," Sci. Rep., 7, 5091(2017).
- Dydek, E. V. and Bazant, M. Z., "Nonlinear Dynamics of Ion Concentration Polarization in Porous Media: The Leaky Membrane Model," AIChE Journal, 59, 3539-3555(2013). https://doi.org/10.1002/aic.14200
- Robertson, R. M., Laib, S. and Smith, D. E., "Diffusion of Isolated DNA Molecules: Dependence on Length and Topology," Proc. Natl. Acad. Sci. U.S.A., 103, 7310-7314(2006). https://doi.org/10.1073/pnas.0601903103
- Salieb-Beugelaar, G. B., Dorfman, K. D., van den Berg, A. and Eijkel, J. C. T., "Electrophoretic Separation of DNA in Gels and Nanostructures," Lab Chip, 9, 2508-2523(2009). https://doi.org/10.1039/b905448k
- Yap, K. K., Fukuda, K., Vail, J. R., Wong, J. and Masen, M. A., "Spatiotemporal Mapping for In-situ and Real-time Tribological Analysis in Polymer-metal Contacts," Tribology International, 171, 107533(2022).
- Posner, J. D., Perez, C. L. and Santiago, J. G., "Electric Fields Yield Chaos in Microflows," Proc. Natl. Acad. Sci. U.S.A., 109, 14353-14356(2012). https://doi.org/10.1073/pnas.1204920109
- Kwak, R., Pham, V. S. and Han, J., "Sheltering the Perturbed Vortical Layer of Electroconvection Under Shear Flow," J. Fluid Mech., 813, 799-823(2017). https://doi.org/10.1017/jfm.2016.870
- Cho, S.-Y. et al., "Finding Hidden Signals in Chemical Sensors Using Deep Learning," Anal. Chem., 92, 6529-6537(2020). https://doi.org/10.1021/acs.analchem.0c00137