DOI QR코드

DOI QR Code

Prediction of Composition Ratio of DNA Solution from Measurement Data with White Noise Using Neural Network

잡음이 포함된 측정 자료에 대한 신경망의 DNA 용액 조성비 예측

  • Gyeonghee Kang (Department of Chemical Engineering, Jeju National University) ;
  • Minji Kim (Department of Chemical Engineering, Jeju National University) ;
  • Hyomin Lee (Department of Chemical Engineering, Jeju National University)
  • 강경희 (제주대학교 화학공학과) ;
  • 김민지 (제주대학교 화학공학과) ;
  • 이효민 (제주대학교 화학공학과)
  • Received : 2023.12.04
  • Accepted : 2023.12.21
  • Published : 2024.02.01

Abstract

A neural network is utilized for preprocessing of de-noizing in electrocardiogram signals, retinal images, seismic waves, etc. However, the de-noizing process could provoke increase of computational time and distortion of the original signals. In this study, we investigated a neural network architecture to analyze measurement data without additional de-noizing process. From the dynamical behaviors of DNA in aqueous solution, our neural network model aimed to predict the mole fraction of each DNA in the solution. By adding white noise to the dynamics data of DNA artificially, we investigated the effect of the noise to neural network's predictions. As a result, our model was able to predict the DNA mole fraction with an error of O(0.01) when signal-to-noise ratio was O(1). This work can be applied as a efficient artificial intelligence methodology for analyzing DNA related to genetic disease or cancer cells which would be sensitive to background measuring noise.

신경망은 심전도 신호, 망막 영상, 지진파 등 잡음이 포함된 자료의 전처리 작업에 활용되고 있다. 그러나, 잡음의 전처리는 전산시간 증가, 원본 신호의 왜곡등의 문제점을 내포하고 있다. 본 연구에서는 잡음의 전처리 없이 측정 자료를 분석할 수 있는 신경망 구조를 연구하였다. 신경망의 학습 자료로써 잡음이 포함된 DNA 용액의 동역학적 거동을 선정하여, 해당 자료로부터 DNA 용액의 조성비를 예측하고자 하였다. DNA의 동역학 자료에 인위적으로 백색 잡음을 추가하여, 신경망의 예측에 대한 잡음의 영향을 알아보았다. 결과적으로, 잡음의 전처리 없이 O(1)의 신호 대 잡음비 자료로부터 O(0.01)의 오차로 용액의 조성비를 예측할 수 있었다. 이러한 연구 결과는 측정 잡음에 민감하게 영향 받을 수 있는 극미량의 유전병 또는 암세포와 관련된 DNA를 분석을 위한 핵심 인공지능 기술로 활용할 수 있다.

Keywords

Acknowledgement

이 논문은 2022학년도 제주대학교 교원성과지원사업에 의하여 연구되었습니다.

References

  1. Brunton, S. L., Noack, B. R. and Koumoutsakos, P., "Machine Learning for Fluid Mechanics," Annu. Rev. Fluid Mech., 52, 477-508(2020). https://doi.org/10.1146/annurev-fluid-010719-060214
  2. Ghavipour, M., Ghavipour, M., Chitsazan, M., Najibi, S. H. and Ghidary, S. S., "Experimental Study of Natural Gas Hydrates and a Novel Use of Neural Network to Predict Hydrate Formation Conditions," Chemical Engineering Research and Design, 91, 264-273(2013). https://doi.org/10.1016/j.cherd.2012.08.010
  3. Landgrebe, M. K. B. and Nkazi, D., "Toward a Robust, Universal Predictor of Gas Hydrate Equilibria by Means of a Deep Learning Regression," ACS Omega, 4, 22399-22417(2019). https://doi.org/10.1021/acsomega.9b02961
  4. Poort, J. P., Ramdin, M., van Kranendonk, J. and Vlugt, T. J. H., "Solving Vapor-liquid Flash Problems Using Artificial Neural Networks," Fluid Phase Equilibria, 490, 39-47(2019). https://doi.org/10.1016/j.fluid.2019.02.023
  5. Sun, G. et al., "Vapor-liquid Phase Equilibria Behavior Prediction of Binary Mixtures Using Machine Learning," Chemical Engineering Science, 282, 119358(2023).
  6. Hamilton, S. J. and Hauptmann, A., "Deep D-Bar: Real-Time Electrical Impedance Tomography Imaging With Deep Neural Networks," IEEE Transactions on Medical Imaging, 37, 2367-2377(2018). https://doi.org/10.1109/TMI.2018.2828303
  7. Kwon, O., Leejieun, Hwan, K. J., Seongjun, L. and Yoo, S. K., "Design of Deep De-nosing Network for Power Line Artifact in Electrocardiogram," Journal of Korea Multimedia Society, 23, 402-411(2020). https://doi.org/10.9717/KMMS.2020.23.3.402
  8. Badar, M., Haris, M. and Fatima, A., "Application of Deep Learning for Retinal Image Analysis: A Review," Computer Science Review, 35, 100203(2020).
  9. Zhang, J. et al. in 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring). 1-5.
  10. Li, Y. and Ma, Z., "Deep Learning-based Noise Reduction for Seismic Data," Journal of Physics: Conference Series, 1861, 012011(2021).
  11. Hong, H., Hong, Q., Liu, J., Tong, W. and Shi, L., "Estimating Relative Noise to Signal in DNA Microarray Data," International Journal of Bioinformatics Research and Applications, 9, 433-448(2013). https://doi.org/10.1504/IJBRA.2013.056085
  12. Sorkhi, M., Jahed-Motlagh, M. R., Minaei-Bidgoli, B. and Daliri, M. R., "Hybrid Fuzzy Deep Neural Network Toward Temporalspatial-frequency Features Learning of Motor Imagery Signals," Sci. Rep., 12, 22334(2022).
  13. C, A. et al., "Noise Reduction in CT Images Using a Selective Mean Filter," Journal of Biomedical Physics & Engineering, 10, 623-634(2020).
  14. Huang, T., Yang, G. and Tang, G., "A Fast Two-dimensional Median Filtering Algorithm," IEEE Transactions on Acoustics, Speech, and Signal Processing, 27, 13-18(1979). https://doi.org/10.1109/TASSP.1979.1163188
  15. Haddad, R. A. and Akansu, A. N., "A Class of Fast Gaussian Binomial Filters for Speech and Image Processing," IEEE Transactions on Signal Processing, 39, 723-727(1991). https://doi.org/10.1109/78.80892
  16. Lee, H., "Analysis of Preconcentration Dynamics inside Dead-end Microchannel," Korean Chem. Eng. Res., 61, 155-161(2023).
  17. Kim, S. J., Wang, Y.-C., Lee, J. H., Jang, H. and Han, J., "Concentration Polarization and Nonlinear Electrokinetic Flow near a Nanofluidic Channel," Phys. Rev. Lett., 99, 044501(2007).
  18. Kim, S. J., Li, L. D. and Han, J., "Amplified Electrokinetic Response by Concentration Polarization near Nanofluidic Channel," Langmuir, 25, 7759-7765(2009). https://doi.org/10.1021/la900332v
  19. Kim, J., Kim, H.-Y., Lee, H. and Kim, S. J., "Pseudo 1-D Micro/Nanofluidic Device for Exact Electrokinetic Responses," Langmuir, 32, 6478-6485(2016). https://doi.org/10.1021/acs.langmuir.6b01178
  20. Choi, J. et al., "Selective Preconcentration and Online Collection of Charged Molecules Using Ion Concentration Polarization," RSC Adv., 5, 66178-66184(2015).
  21. Choi, J. et al., "Nanoelectrokinetic Selective Preconcentration Based on Ion Concentration Polarization," BIOCHIP J., 14, 100-109(2020). https://doi.org/10.1007/s13206-020-4109-3
  22. Kim, J., Cho, I., Lee, H. and Kim, S. J., "Ion Concentration Polarization by Bifurcated Current Path," Sci. Rep., 7, 5091(2017).
  23. Dydek, E. V. and Bazant, M. Z., "Nonlinear Dynamics of Ion Concentration Polarization in Porous Media: The Leaky Membrane Model," AIChE Journal, 59, 3539-3555(2013). https://doi.org/10.1002/aic.14200
  24. Robertson, R. M., Laib, S. and Smith, D. E., "Diffusion of Isolated DNA Molecules: Dependence on Length and Topology," Proc. Natl. Acad. Sci. U.S.A., 103, 7310-7314(2006). https://doi.org/10.1073/pnas.0601903103
  25. Salieb-Beugelaar, G. B., Dorfman, K. D., van den Berg, A. and Eijkel, J. C. T., "Electrophoretic Separation of DNA in Gels and Nanostructures," Lab Chip, 9, 2508-2523(2009). https://doi.org/10.1039/b905448k
  26. Yap, K. K., Fukuda, K., Vail, J. R., Wong, J. and Masen, M. A., "Spatiotemporal Mapping for In-situ and Real-time Tribological Analysis in Polymer-metal Contacts," Tribology International, 171, 107533(2022).
  27. Posner, J. D., Perez, C. L. and Santiago, J. G., "Electric Fields Yield Chaos in Microflows," Proc. Natl. Acad. Sci. U.S.A., 109, 14353-14356(2012). https://doi.org/10.1073/pnas.1204920109
  28. Kwak, R., Pham, V. S. and Han, J., "Sheltering the Perturbed Vortical Layer of Electroconvection Under Shear Flow," J. Fluid Mech., 813, 799-823(2017). https://doi.org/10.1017/jfm.2016.870
  29. Cho, S.-Y. et al., "Finding Hidden Signals in Chemical Sensors Using Deep Learning," Anal. Chem., 92, 6529-6537(2020). https://doi.org/10.1021/acs.analchem.0c00137