Acknowledgement
본 논문은 한국생산기술연구원 "화학산업 연속 제조공정 플랜트레벨 지능화 플랫폼 기술개발(JH-23-0002)"의 지원으로 수행한 연구이며, 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임(탄소배출 데이터베이스 및 예측모델 기반 탄소중립 엔지니어링 플랫폼 개발 및 적용 기술혁신사업, 00144098).
References
- Kim, S., Kim, Y. T., Oh, L. S., Kim, H. J. and Lee, J., "Marine Waste Upcycling-recovery of Nylon Monomers from Fishing Net Waste Using Seashell Waste-derived Catalysts in a CO2-mediated Thermocatalytic Process," J. Mater. Chem. A. 10, 20024-20034(2022). https://doi.org/10.1039/D2TA02060B
- [WAP] World Animal Protection, Ghosts Beneath the Waves, 76, (2018).
- Xu, D., Xiong, Y., Zhang, S. and Su, Y., "The Synergistic Mechanism Between Coke Depositions and Gas for H2 Production From Co-pyrolysis of Biomass and Plastic Wastes via Char Supported Catalyst," Waste Manag. 121, 23-32(2021). https://doi.org/10.1016/j.wasman.2020.11.044
- Cudjoe, D. and Wang, H., "Plasma Gasification Versus Incineration of Plastic Waste: Energy, Economic and Environmental Analysis," Fuel Process. Technol. 237, 107470(2022).
- Singh, N., Hui, D., Singh, R., Ahuja, I. P. S., Feo, L. and Fraternali, F., "Recycling of Plastic Solid Waste: A State of Art Review and Future Applications," Compos. Part B Eng. 115, 409-422(2017). https://doi.org/10.1016/j.compositesb.2016.09.013
- Belden, E. R., Rando, M., Ferrara, O. G., Himebaugh, E. T., Skangos, C. A., Kazantzis, N. K., Paffenroth, R. C. and Timko, M. T., "Machine Learning Predictions of Oil Yields Obtained by Plastic Pyrolysis and Application to Thermodynamic Analysis," ACS Eng. Au. 3, 91-101(2023). https://doi.org/10.1021/acsengineeringau.2c00038
- Jung, S., Lee, S., Dou, X. and Kwon, E. E., "Valorization of Disposable COVID-19 Mask Through the Thermo-chemical Process," Chem. Eng. J. 405, 126658(2021).
- Hamid, K., Sabir, R., Hameed, K., Waheed, A. and Ansari, M. U., "Economic Analysis of Fuel Oil Production from Pyrolysis of Waste Plastic," Austin Environ. Sci. 6, 1-8(2021).
- Kabir, M. J., Chowdhury, A. A. and Rasul, M. G., "Pyrolysis of Municipal Green Waste: A Modelling, Simulation and Experimental Analysis," Energies. 8, 7522-7541(2015). https://doi.org/10.3390/en8087522
- Kwon, E. E., Kim, S. and Lee, J., "Pyrolysis of Waste Feedstocks in CO2 for Effective Energy Recovery and Waste Treatment," J. CO2 Util. 31, 173-180(2019). https://doi.org/10.1016/j.jcou.2019.03.015
- Lee, T., Lee, J., Ok, Y. S., Oh, J. I., Lee, S. R., Rinklebe, J., Kwon, E. E., "Utilizing CO2 to Suppress the Generation of Harmful Chemicals from Thermal Degradation of Polyvinyl Chloride," J. Clean. Prod. 162, 1465-1471(2017). https://doi.org/10.1016/j.jclepro.2017.06.181
- Lee, T., Oh, J. I., T. Kim, Tsang, D. C. W., Kim, K. H., Lee, J. and Kwon, E. E., "Controlling Generation of Benzenes and Polycyclic Aromatic Hydrocarbons in Thermolysis of Polyvinyl Chloride in CO2", Energy Convers. Manag. 164, 453-459(2018). https://doi.org/10.1016/j.enconman.2018.03.019
- Lee, J., Lee, T., Tsang, Y. F., Oh, J. I. and Kwon, E. E., "Enhanced Energy Recovery from Polyethylene Terephthalate via Pyrolysis in CO2 Atmosphere While Suppressing Acidic Chemical Species," Energy Convers. Manag. 148, 456-460(2017). https://doi.org/10.1016/j.enconman.2017.06.026
- Kwon, E. E., Yi, H. and Castaldi, M. J., Utilizing Carbon Dioxide as a Reaction Medium to Mitigate Production of Polycyclic Aromatic Hydrocarbons from the Thermal Decomposition of Styrene Butadiene Rubber, (2012).
- Jung, S., Choi, D., Park, Y.-K., Tsang, Y. F., Klinghoffer, N. B., Kim, K.-H. and Kwon, E. E., "Functional use of CO2 for Environmentally Benign Production of Hydrogen Through Catalytic Pyrolysis of Polymeric Waste," Chem. Eng. J. 399, 125889(2020).
- Weissbach, G., Gerke, G., Stolte, A. and Schneider, F., "Material Studies for the Recycling of Abandoned, Lost or Otherwise Discarded Fishing Gear (ALDFG)," Waste Manag. Res. 40, 1039-1046(2021).
- Westerhout, R. W. J., Kuipers, J. A. M., Van Swaaij, W. P. M., "Experimental Determination of the Yield of Pyrolysis Products of Polyethene and Polypropene. Influence of Reaction Conditions," Ind. Eng. Chem. Res. 37, 841-847(1998). https://doi.org/10.1021/ie970384a
- Hong, S., Lee, J., Cho, H., Kim, M., Moon, I. and Kim, J., "Multi-objective Optimization of CO2 Emission and Thermal Efficiency for On-site Steam Methane Reforming Hydrogen Production Process Using Machine Learning," J. Clean. Prod. 359, 132133(2022).
- Ramzan, N., Ashraf, A., Naveed, S. and Malik, A., "Simulation of Hybrid Biomass Gasification Using Aspen plus: A Comparative Performance Analysis for Food, Municipal Solid and Poultry Waste," Biomass and Bioenergy. 35, 3962-3969(2011). https://doi.org/10.1016/j.biombioe.2011.06.005
- Wang, M., Lawal, A., Stephenson, P., Sidders, J. and Ramshaw, C., "Post-combustion CO2 Capture with Chemical Absorption: A State-of-the-art Review," Chem. Eng. Res. Des. 89, 1609-1624(2011). https://doi.org/10.1016/j.cherd.2010.11.005
- Almohamadi, H., Alamoudi, M., Ahmed, U., Shamsuddin, R. and Smith, K., "Producing Hydrocarbon Fuel From the Plastic Waste: Techno-economic Analysis," Korean J. Chem. Eng. 38, 2208-2216(2021). https://doi.org/10.1007/s11814-021-0876-3
- Kim, Y., Lee, J., Cho, H. and Kim, J., "Novel Cryogenic Carbon Dioxide Capture and Storage Process Using LNG Cold Energy in a Natural Gas Combined Cycle Power Plant," Chem. Eng. J. 456, 140980(2023).
- Bao, J., Zhang, L., Song, C., Zhang, N., Guo, M. and Zhang, X., "Reduction of Efficiency Penalty for a Natural Gas Combined Cycle Power Plant with Post-combustion CO2 Capture: Integration of Liquid Natural Gas Cold Energy," Energy Convers. Manag. 198, 111852(2019).