DOI QR코드

DOI QR Code

Carbon Dioxide-based Plastic Pyrolysis for Hydrogen Production Process: Sustainable Recycling of Waste Fishing Nets

이산화탄소 기반 플라스틱 열분해 수소 생산 공정: 지속가능한 폐어망 재활용

  • Yurim Kim (Green Materials and Processes R&D Group, Korea Institute of Industrial Technology) ;
  • Seulgi Lee (Green Materials and Processes R&D Group, Korea Institute of Industrial Technology) ;
  • Sungyup Jung (Department of Environmental Engineering, Kyungpook National University) ;
  • Jaewon Lee (Green Materials and Processes R&D Group, Korea Institute of Industrial Technology) ;
  • Hyungtae Cho (Green Materials and Processes R&D Group, Korea Institute of Industrial Technology)
  • 김유림 (한국생산기술연구원 친환경재료공정연구그룹) ;
  • 이슬기 (한국생산기술연구원 친환경재료공정연구그룹) ;
  • 정성엽 (경북대학교 환경공학과) ;
  • 이재원 (한국생산기술연구원 친환경재료공정연구그룹) ;
  • 조형태 (한국생산기술연구원 친환경재료공정연구그룹)
  • Received : 2023.08.25
  • Accepted : 2023.11.29
  • Published : 2024.02.01

Abstract

Fishing net waste (FNW) constitutes over half of all marine plastic waste and is a major contributor to the degradation of marine ecosystems. While current treatment options for FNW include incineration, landfilling, and mechanical recycling, these methods often result in low-value products and pollutant emissions. Importantly, FNWs, comprised of plastic polymers, can be converted into valuable resources like syngas and pyrolysis oil through pyrolysis. Thus, this study presents a process for generating high-purity hydrogen (H2) by catalytically pyrolyzing FNW in a CO2 environment. The proposed process comprises of three stages: First, the pretreated FNW undergoes Ni/SiO2 catalytic pyrolysis under CO2 conditions to produce syngas and pyrolysis oil. Second, the produced pyrolysis oil is incinerated and repurposed as an energy source for the pyrolysis reaction. Lastly, the syngas is transformed into high-purity H2 via the Water-Gas-Shift (WGS) reaction and Pressure Swing Adsorption (PSA). This study compares the results of the proposed process with those of traditional pyrolysis conducted under N2 conditions. Simulation results show that pyrolyzing 500 kg/h of FNW produced 2.933 kmol/h of high-purity H2 under N2 conditions and 3.605 kmol/h of high-purity H2 under CO2 conditions. Furthermore, pyrolysis under CO2 conditions improved CO production, increasing H2 output. Additionally, the CO2 emissions were reduced by 89.8% compared to N2 conditions due to the capture and utilization of CO2 released during the process. Therefore, the proposed process under CO2 conditions can efficiently recycle FNW and generate eco-friendly hydrogen product.

폐어망은 해양 플라스틱 폐기물의 50% 이상을 차지하며, 해양생태계를 파괴하는 주요 원인으로 지목되고 있다. 이러한 문제를 해결하기 위해 폐어망은 소각, 매립, 기계적 재활용 등의 방법으로 처리되고 있으나, 부가가치가 낮은 제품으로 재활용되며, 오염 물질을 배출한다는 한계가 존재한다. 하지만 플라스틱 고분자로 구성된 폐어망은 열분해 방법을 통해 처리할 경우, 합성가스 및 열분해유와 같은 유용한 자원으로 재활용할 수 있다. 따라서 본 연구에서는 CO2 기반에서 폐어망을 촉매 열분해하여 고순도의 H2를 생산하는 공정을 제안하였다. 제안된 공정은 다음 3단계로 구성된다. 첫째, 전처리 된 폐어망을 CO2 기반 하 Ni/SiO2 촉매 열분해 반응을 통해 합성가스 및 열분해유를 생산한다. 둘째, 생성된 열분해유를 연소시켜 열분해 반응의 에너지원으로 재사용한다. 마지막으로, 합성가스를 WGS (Water-Gas-Shift) 및 PSA (Pressure Swing Adsorption)를 통해 고순도의 H2로 전환한다. 본 연구에서는 제안된 공정의 열분해 결과를 일반적인 열분해 조건인 기존 N2 기반 열분해 결과와 비교하였다. 시뮬레이션 결과, 폐어망 500 kg/h을 열분해 시 N2 기반에서는 2.933 kmol/h의 고순도 H2를, CO2 기반에서는 3.605 kmol/h 의 고순도 H2를 생산 가능했다. CO2 기반 폐어망 열분해에서 CO 생산이 향상되어 최종적으로 H2 생산량이 증대된 결과가 도출되었다. 또한 폐어망 열분해 시 CO2 기반에서는 공정 운전 과정에서 배출되는 CO2를 포집 후 활용함으로써, N2 기반 열분해에 비해 CO2 배출량을 89.8% 줄일 수 있었다. 연구 결과를 바탕으로 CO2 기반에서의 제안 공정은 폐어망 재활용과 더불어 친환경적인 수소 연료생산이라는 목표를 달성할 수 있을 것으로 기대된다.

Keywords

Acknowledgement

본 논문은 한국생산기술연구원 "화학산업 연속 제조공정 플랜트레벨 지능화 플랫폼 기술개발(JH-23-0002)"의 지원으로 수행한 연구이며, 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임(탄소배출 데이터베이스 및 예측모델 기반 탄소중립 엔지니어링 플랫폼 개발 및 적용 기술혁신사업, 00144098).

References

  1. Kim, S., Kim, Y. T., Oh, L. S., Kim, H. J. and Lee, J., "Marine Waste Upcycling-recovery of Nylon Monomers from Fishing Net Waste Using Seashell Waste-derived Catalysts in a CO2-mediated Thermocatalytic Process," J. Mater. Chem. A. 10, 20024-20034(2022). https://doi.org/10.1039/D2TA02060B
  2. [WAP] World Animal Protection, Ghosts Beneath the Waves, 76, (2018).
  3. Xu, D., Xiong, Y., Zhang, S. and Su, Y., "The Synergistic Mechanism Between Coke Depositions and Gas for H2 Production From Co-pyrolysis of Biomass and Plastic Wastes via Char Supported Catalyst," Waste Manag. 121, 23-32(2021). https://doi.org/10.1016/j.wasman.2020.11.044
  4. Cudjoe, D. and Wang, H., "Plasma Gasification Versus Incineration of Plastic Waste: Energy, Economic and Environmental Analysis," Fuel Process. Technol. 237, 107470(2022).
  5. Singh, N., Hui, D., Singh, R., Ahuja, I. P. S., Feo, L. and Fraternali, F., "Recycling of Plastic Solid Waste: A State of Art Review and Future Applications," Compos. Part B Eng. 115, 409-422(2017). https://doi.org/10.1016/j.compositesb.2016.09.013
  6. Belden, E. R., Rando, M., Ferrara, O. G., Himebaugh, E. T., Skangos, C. A., Kazantzis, N. K., Paffenroth, R. C. and Timko, M. T., "Machine Learning Predictions of Oil Yields Obtained by Plastic Pyrolysis and Application to Thermodynamic Analysis," ACS Eng. Au. 3, 91-101(2023). https://doi.org/10.1021/acsengineeringau.2c00038
  7. Jung, S., Lee, S., Dou, X. and Kwon, E. E., "Valorization of Disposable COVID-19 Mask Through the Thermo-chemical Process," Chem. Eng. J. 405, 126658(2021).
  8. Hamid, K., Sabir, R., Hameed, K., Waheed, A. and Ansari, M. U., "Economic Analysis of Fuel Oil Production from Pyrolysis of Waste Plastic," Austin Environ. Sci. 6, 1-8(2021).
  9. Kabir, M. J., Chowdhury, A. A. and Rasul, M. G., "Pyrolysis of Municipal Green Waste: A Modelling, Simulation and Experimental Analysis," Energies. 8, 7522-7541(2015). https://doi.org/10.3390/en8087522
  10. Kwon, E. E., Kim, S. and Lee, J., "Pyrolysis of Waste Feedstocks in CO2 for Effective Energy Recovery and Waste Treatment," J. CO2 Util. 31, 173-180(2019). https://doi.org/10.1016/j.jcou.2019.03.015
  11. Lee, T., Lee, J., Ok, Y. S., Oh, J. I., Lee, S. R., Rinklebe, J., Kwon, E. E., "Utilizing CO2 to Suppress the Generation of Harmful Chemicals from Thermal Degradation of Polyvinyl Chloride," J. Clean. Prod. 162, 1465-1471(2017). https://doi.org/10.1016/j.jclepro.2017.06.181
  12. Lee, T., Oh, J. I., T. Kim, Tsang, D. C. W., Kim, K. H., Lee, J. and Kwon, E. E., "Controlling Generation of Benzenes and Polycyclic Aromatic Hydrocarbons in Thermolysis of Polyvinyl Chloride in CO2", Energy Convers. Manag. 164, 453-459(2018). https://doi.org/10.1016/j.enconman.2018.03.019
  13. Lee, J., Lee, T., Tsang, Y. F., Oh, J. I. and Kwon, E. E., "Enhanced Energy Recovery from Polyethylene Terephthalate via Pyrolysis in CO2 Atmosphere While Suppressing Acidic Chemical Species," Energy Convers. Manag. 148, 456-460(2017). https://doi.org/10.1016/j.enconman.2017.06.026
  14. Kwon, E. E., Yi, H. and Castaldi, M. J., Utilizing Carbon Dioxide as a Reaction Medium to Mitigate Production of Polycyclic Aromatic Hydrocarbons from the Thermal Decomposition of Styrene Butadiene Rubber, (2012).
  15. Jung, S., Choi, D., Park, Y.-K., Tsang, Y. F., Klinghoffer, N. B., Kim, K.-H. and Kwon, E. E., "Functional use of CO2 for Environmentally Benign Production of Hydrogen Through Catalytic Pyrolysis of Polymeric Waste," Chem. Eng. J. 399, 125889(2020).
  16. Weissbach, G., Gerke, G., Stolte, A. and Schneider, F., "Material Studies for the Recycling of Abandoned, Lost or Otherwise Discarded Fishing Gear (ALDFG)," Waste Manag. Res. 40, 1039-1046(2021).
  17. Westerhout, R. W. J., Kuipers, J. A. M., Van Swaaij, W. P. M., "Experimental Determination of the Yield of Pyrolysis Products of Polyethene and Polypropene. Influence of Reaction Conditions," Ind. Eng. Chem. Res. 37, 841-847(1998). https://doi.org/10.1021/ie970384a
  18. Hong, S., Lee, J., Cho, H., Kim, M., Moon, I. and Kim, J., "Multi-objective Optimization of CO2 Emission and Thermal Efficiency for On-site Steam Methane Reforming Hydrogen Production Process Using Machine Learning," J. Clean. Prod. 359, 132133(2022).
  19. Ramzan, N., Ashraf, A., Naveed, S. and Malik, A., "Simulation of Hybrid Biomass Gasification Using Aspen plus: A Comparative Performance Analysis for Food, Municipal Solid and Poultry Waste," Biomass and Bioenergy. 35, 3962-3969(2011). https://doi.org/10.1016/j.biombioe.2011.06.005
  20. Wang, M., Lawal, A., Stephenson, P., Sidders, J. and Ramshaw, C., "Post-combustion CO2 Capture with Chemical Absorption: A State-of-the-art Review," Chem. Eng. Res. Des. 89, 1609-1624(2011). https://doi.org/10.1016/j.cherd.2010.11.005
  21. Almohamadi, H., Alamoudi, M., Ahmed, U., Shamsuddin, R. and Smith, K., "Producing Hydrocarbon Fuel From the Plastic Waste: Techno-economic Analysis," Korean J. Chem. Eng. 38, 2208-2216(2021). https://doi.org/10.1007/s11814-021-0876-3
  22. Kim, Y., Lee, J., Cho, H. and Kim, J., "Novel Cryogenic Carbon Dioxide Capture and Storage Process Using LNG Cold Energy in a Natural Gas Combined Cycle Power Plant," Chem. Eng. J. 456, 140980(2023).
  23. Bao, J., Zhang, L., Song, C., Zhang, N., Guo, M. and Zhang, X., "Reduction of Efficiency Penalty for a Natural Gas Combined Cycle Power Plant with Post-combustion CO2 Capture: Integration of Liquid Natural Gas Cold Energy," Energy Convers. Manag. 198, 111852(2019).