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Abstract
We propose recurrent neural network (RNN) methods for forecasting realized volatility (RV). The data are

RVs of ten major stock price indices, four from the US, and six from the EU. Forecasts are made for relative
ratio of adjacent RVs instead of the RV itself in order to avoid the out-of-scale issue. Forecasts of RV ratios
distribution are first constructed from which those of RVs are computed which are shown to be better than
forecasts constructed directly from RV. The apparent asymmetry of RV ratio is addressed by the Piecewise Min-
max (PM) normalization. The serial dependence of the ratio data renders us to consider two architectures, long
short-term memory (LSTM) and gated recurrent unit (GRU). The hyperparameters of LSTM and GRU are tuned
by the nested cross validation. The RNN forecast with the PM normalization and ratio transformation is shown
to outperform other forecasts by other RNN models and by benchmarking models of the AR model, the support
vector machine (SVM), the deep neural network (DNN), and the convolutional neural network (CNN).

Keywords: asymmetry, realized volatility, normalization, ratio transformation, recurrent neural net-
work

1. Introduction

Forecasting volatility for financial assets has recently garnered significant interest among investors and
professional analysts because of its importance in risk management, derivative pricing, and portfolio
allocation. In recent years, availability of high frequency intra-day asset price data sets has enabled
us to realize the hidden volatility via realized volatility (RV). Since volatility is related to future asset
price uncertainty, forecast of RV is one of the main issues. Diverse methodologies for forecasting RV
have been developed during the last decade in various academic fields and applied in real markets.
Major results on RV forecasting were reviewed by McAleer and Medeiros (2008a), Andersen and
Terasvirta (2009), and Shin (2018).

These days, taking well advantage of hidden nonlinearity in time series data, deep learning has
been widely considered in regression and classification problems, and has proved to perform very well
compared with other methods. Furthermore, since neural network methods do not require normality
assumptions for population distribution, financial analysts, economists and statisticians are increas-
ingly using these methods for data analysis (Mantri et al., 2010). With this trend, there have been
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many research works which compare methods using deep neural networks with others for time series
data. For example, there were comparisons between the performances of artificial neural network
(ANN) and autoregressive integrated moving average models for forecasting commodity prices (Ko-
hzadi et al., 1996); ANNs and support vector machines were used to predict prices on the Istanbul
stock exchange national 100 index (Kara et al., 2011); Mantri et al. (2010) calculated the volatilities of
Indian stock markets using the artificial networks and the statistical time series methods of GARCH,
EGARCH, GJR-GARCH, IGARCH models.

The main characteristic of time series data is serial dependence. In particular, financial volatil-
ity data sets such as RV data sets and implied volatility data sets show very strong persistent serial
dependence, called long-memory, see Section 2 and for example Engle and Patton (2007), Andersen
and Terasvirta (2009), and Bollerslev et al. (2016). The serial dependence of RV data sets leads us
to adopt recurrent neural networks (RNNs), particularly long short-term memory (LSTM), a variant
of RNN, which has recently emerged as an effective model for a variety of applications involving se-
quential data (Hochreiter and Schmidhuber, 1997; Karpathy et al., 2015). In addition, gated recurrent
unit (GRU) is widely used for analyzing time series data including language, video, and others, also
can outperform LSTM units in terms of convergence in CPU time, parameter updates, and general-
ization (Chung et al., 2014; Cho et al., 2014). There is also bidirectional RNN, an extended version
of RNN, which can be trained without limitations using input information just up to a preset future
frame and offers better performance than RNN. The hyperparameters of the recurrent network with
LSTM units and GRU such as the input length for serial dependence consideration, the number of
layers, and others are chosen by the nested cross validation (CV).

In the recent literature, RNN models have been sucessfully adopted for forecasting volatilities of
financial time series. Kim and Won (2018) considered a combination of the deep learning LSTM
for volatility forecast of the KOSPI (Korean stock price index) and compared the proposed model
with other standard models. Liu (2019) compared volatility forecasts of the US S&P 500 index and
AAPL (Nasdaq Apple stock price) by the SVM, the LSTM and the statistical GARCH model and
identified the situations in which the LSTM has better performance. Bucci (2020) studied forecast of
monthly realized volatility of the US S&P stock price index and compared some RNN models and
some econometric models. Lei et al. (2021) considered the LSTM with text mining as a sentiment
analysis to improve forecast of the realized volatility of Stock Rambler in China stock market. They
used the comments of investors in the stock bar as the basis for the sentiment analysis. We see
some RNN methods for forecasting volatilities of commodity prices: The CNN-LSTM by Vidal and
Kristjanpoller (2020) for gold price and the LSTM+GARCH model by Hu et al. (2020) for copper
price. In the above RNN methods, they do not address the dominant data feature of long-memory and
asymmetry of financial volatility data sets. The RNN models would produce better volatility forecasts
if the long-memory and asymmetry features of volatility are well addressed. These features will be
addressed by ratio transformation and piecewise min-max normalization. This consideration will be
shown to produce considerably better RV forecasts for 10 major world stock price indices than other
methods which ignore the dominant data features.

We forecast daily RV of major stock price indices of the US and the EU. Recall that the deep
learning forecasts usually show out-of-scale issue that forecasted values are limited within the range
of training data, and the issue is generally resolved by considering ratios rather than data themselves
(Fisher and Karauss, 2018; Liu and Mehta, 2019; Oztekin et al., 2016). Moreover, compared to
original RV’s, the ratioed RV’s has substantially less persistent serial dependence which render the
RNN forecast model to perform better. We therefore consider relative ratio of adjacent RVs instead
of the RV itself. Learning and forecasting are first made for the RV ratios, and forecasts of RV values
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Table 1: Summary statistics of 100RV, 100 vt, t = 1, . . . ,T ; The total number observation is T = 3344 for each
asset

Index Mean SD Skewness CoV Min Median Max ρ̂v
1 ρ̂v

10 ρ̂v
100

S&P 0.92 0.69 15.16 0.58 0.11 0.62 29.66 0.82 0.65 0.29
RUSSELL 1.01 0.64 14.76 0.39 0.20 0.73 27.65 0.81 0.63 0.30

DJIA 0.90 0.63 16.14 0.57 0.14 0.63 30.47 0.78 0.63 0.27
NASDAQ 0.86 0.69 16.41 0.48 0.18 0.65 24.81 0.82 0.63 0.29

FTSE 0.76 0.53 17.78 0.45 0.21 0.57 23.63 0.83 0.68 0.36
CAC 0.96 0.80 15.09 0.48 0.22 0.85 26.75 0.81 0.62 0.28
DAX 0.99 0.82 14.88 0.50 0.19 0.83 27.69 0.81 0.63 0.23
AEX 0.86 0.69 14.65 0.54 0.21 0.71 24.53 0.83 0.66 0.31
SSMI 0.76 0.62 19.58 0.42 0.24 0.62 25.45 0.82 0.63 0.31
IBEX 1.11 0.73 14.89 0.55 0.28 0.94 27.24 0.79 0.58 0.29

ρ̂k is the sample autocorrelation of lag k = 1, 10.

are next computed from those of RV ratio values. The forecasts based on ratioed RVs will be shown
to be better than those based on RV themselves.

In addition to the long-memory feature of RV data sets, another important one is asymmetry as
reviewed by Corsi (2009), McAleer and Medeiros (2008a), and many others. The asymmetric feature
of RV data sets still remains in RV ratio data sets: Heavier right tails than left tails, as shown in
Sections 2 and 5. We address the asymmetry issue by piecewise min-max (PM) normalization to
scale the data. The PM normalization is shown to faithfully address the asymmetry in the RV ratio
data resulting in better forecasts than the other usual normalizations: Min-max (MM) normalization,
Gaussian mixture (GM) normalization.

Superiority of the proposed method is illustrated in an out-of-sample forecast comparison for RV’s
of 10 major US and EU stock price indices: S&P 500, Russell 2000, DJIA, NASDAQ, FTSE 100,
CAC 40, DAX, AEX, SSMI, IBEX 35. (i) The proposed RNN model with ratio transformation and
PM normalization (RNN-R-PM) is the best among 6 RNN models (with or without ratio transforma-
tion and MM, GM, PM other normalization) and 4 benchmarking models of the AR, the SVM, the
DNN, and the CNN. (ii) The RNN is shown to be better than the DNN and the CNN when applied to
the original RV with the MM normalization as is the usual practice. (iii) Ratio transformation of RV
gives the RNN better forecasts than original RV. (iv) PM normalization yields better forecast for the
RNN than MM and GM normalizations.

The rest of the paper is organized as follows. Section 2 describes our research data. Section 3
presents three normalization methods, RNN-based methods, and the nested CV. Section 4 explains
experimental design, evaluation measures, an implementation of the nested CV method. Section 5
provides an illustration of the modeling procedure, the CV results and forecast performance compar-
ison results of the RNN-based methods and the benchmarking models. Finally, Section 6 concludes
this work.

2. RV data and RV ratio data

A realized variance is simply the sum of squares of intra-day log-returns for which the unit of time
is usually one day and it is indexed by t = 1, 2, . . . . For a day t, if we let equally spaced intra-day
log price observations be pt−1+γ j for j = 0, 1, . . . ,M, γ = 1/M, γ-spaced realized variance for day t is
given as

∑M
j=1(r(γ)

t j )2 for t = 1, 2, . . . , where r(γ)
t j = pt−1+γ j− pt−1+γ( j−1) is the log-return for the γ-spaced

intraday interval [t − 1 + γ( j − 1), t − 1 + γ j]. Then, RV for a day t is given by vt =

√∑M
j=1(r(γ)

t j )2.
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Table 2: Summary statistics of ratio of adjacent RV values, ut = vt/vt−1, t = 2, . . . ,T

Index Mean SD Skewness CoV Min Median Max ρ̂u
1 ρ̂u

10 ρ̂u
100

S&P 1.07 0.41 3.71 0.36 0.27 0.99 8.957 −0.34 0.01 −0.01
RUSSELL 1.06 0.47 2.79 0.33 0.23 0.99 6.58 −0.35 0.02 0.01

DJIA 1.08 0.46 3.30 0.37 0.26 1.01 8.17 −0.37 −0.01 −0.02
NASDAQ 1.04 0.35 3.26 0.36 0.22 0.99 6.58 −0.30 0.01 −0.01

FTSE 1.04 0.34 6.23 0.28 0.18 1.00 8.82 −0.31 0.06 0.00
CAC 1.04 0.32 4.77 0.30 0.27 1.04 7.84 −0.32 0.06 −0.01
DAX 1.04 0.34 3.29 0.33 0.31 0.99 6.21 −0.33 0.04 −0.01
AEX 1.03 0.33 4.98 0.31 0.24 1.00 8.14 −0.31 0.06 −0.02
SSMI 0.99 0.31 7.07 0.25 0.25 0.99 8.19 −0.30 0.02 −0.03
IBEX 1.04 0.35 5.56 0.32 0.27 1.00 7.34 −0.30 0.04 −0.02

We consider RV data sets of 10 major stock price indices, 4 in the US and 6 in the EU for the period
from Jan. 5, 2004 to Nov. 30, 2017 which are obtained from the oxford-man institute’s realized library
(https://realized.oxford-man.ox.ac.uk/). sampling interval for the RVs is γ = 5/(24 × 60) day, i.e., 5
minute. The total number of RV values for each asset is T = 3344.

Summary statistics of the RV data sets are shown in Table 1. The means of RV are all roughly
1% and skewness values are all much larger than 0 indicating very right-skewed data distributions,
which can also be confirmed by much larger values of (max - median) than (median - min) values, for
example 29.66− 0.62 > 0.62− 0.11 for S&P. The CoV denotes the coefficient of variation, SD/Mean.
As the randomness limits the accuracy of forecasts in general, forecasting with less dispersed data is
presumably advantageous, and the CoV can be utilized as a rough indicator for this. The CoV of RV
has a value around 0.5 for every index.

From Table 1, it can be inferred that the RV data is somewhat irregular due to high skewness and
CoV. Also, it is generally reported that the RNN-based forecasts usually suffer from the out-of-sacle
issue that the forecast value tends to be limited within the range seen from the training data. These
concerns can be relieved by using the relative ratio of RV instead of the original value to forecast (Liu
and Mehta, 2019). The relative ratio of RV is denoted ut = vt/vt−1, t = 1, . . . ,T − 1. Since RV values
are positive, the relative ratio of adjacent values of RV is defined well. When we compute a forecast
v̂t+1 of vt+1 at time t, we first conducted forecast ût+1 of ut+1 using a trained model for u1, . . . , ut and
next construct forecast v̂t+1 = ût+1vt. Summary statistics of the ratio data are reported in Table 2. We
can check from the relatively small values for the skewness and CoV than those of RV that the relative
ratio of RV is less dispersed and skewed than RV. These advantageous stochastic features support
taking relative ratios instead of RV values for forecasting.

In addition to avoiding the out of scale issue and having smaller skewness and CoV than the
RV data, the ratioed RV data has another important advantage of resolving the long memory of the
original RV data, which considerably improve deep learning forecasts. For this discussion, we choose
the S&P 500. The conclusion of this paragraph holds good for all the other assets. Figure 1 shows
time series plot of the daily RV series vt of the S&P 500 and its autocorrelation function (ACF)
ρ̂v

k = ĉorr(vt, vt−k), k = 1, . . . , 200. The figure reveals that the RV series vt has persistent strong
autocorrelation even for large k, for example, ρ̂v

10 = 0.65, ρ̂v
100 = 0.29 which is called long memory. A

long memory of vt means that two observations (vt, vt−k) have non-negligible correlation even though
they are far apart, i.e. corr(vt, vt−k) is not close to 0 even for large k. This means that vt’s have high
similarity for a wide range of t. The long-memory of vt is a consequence of the repeated “∧”-like
peaks as shown in Figure 1(a), which span for long periods of more than several weeks or several
months. When a batch of consecutive vt’s are input to an RNN, information in the batch is not well
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(a) Timeseries (b) ACF

Figure 1: Timeseries plot of the RV of the S&P 500 and its autocorrelation function (ACF) plot.

(a) Timeseries (b) ACF

Figure 2: Timeseries plot of the ratioed RV of the S&P 500 and its ACF plot.

utilized by the RNN because of high similarity of neighboring observations in the batch, producing
poor forecasts. The high similarity of neighboring values arising from long memory is considerably
resolved in the ratio data ut = vt/vt−1 as shown in its Figure 2(a) and autocorrelation function ρ̂u

k =

Ĉorr(ut, ut−k) in Figure 2(b). In Figure 2(b), ρ̂u
k , k = 2, . . . , 200, all lie within or slightly out of the

dotted ±0.035 band, which is the ±2 × standard error (ρ̂u
k) = ±2/

√
T = ±0.035. Note howeverρ̂u

1 =

−0.34 is significantly non-zero, telling that ut has a short-memory. Now, a batch of consecutive ut in
the ratioed RV consists of less autocorrelated values than vt of the original RV and would be more
well utilized in RNN forecast model to produce better forecasts as will be revealed in Section 5.3.

The remaining non-negligible autocorrelation for one lag k = 1 (significantly nonzero ρ̂u
1) as well

as significant asymmetry (skewness > 0) as shown in Table 2 lead us to consider forecasting by the
RNN, which is more suitable for serially dependent data than other deep learning models such as the
DNN and the CNN. In our RNN methods, we will address the asymmetry by PMM normalization and
the serial correlation by the LSTM and the GRU.

3. Data normalization and RNN methods

3.1. Normalization

The values passed between layers in the RNN models need to be scaled to [0, 1] or [−1, 1]. Normal-
ization techniques can be used to scale the data and can speed up training time by starting the training
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process with the scaled data (Liu and Mehta, 2019). Since we focus on forecasting the relative ratio of
RV, normalization is adopted to it. The parameters required for the normalization process are usually
obtained from a set of values, which is mostly a train set. Here, letU be the set on which normaliza-
tion is based. In this work, three kinds of normalization techniques are employed as described in the
following.

The min-max normalization (MMN) is the simplest method to adjust range of data to lie in [0, 1]
(Liu and Mehta, 2019). For a value u, the MMN is applied as follows

fm (u;U) =
u −min (U)

max (U) −min (U)
. (3.1)

It preserves the stochastic properties of the data except that only the range is scaled to [0, 1]. Also, the
MMN has the advantage of low complexity of denormalization.

The Gaussian mixture normalization (GMN) exploits a density estimation method using linear
superposition of Gaussian distributions. The distribution of values inU can be approximated through
Gaussian mixture model. We use a well-known fact that FX(X) follows a uniform distribution on
(0, 1) for any random variable X whose distribution function FX is continuous. The GMN transforms
a value u to be in (0, 1) as

fg (u;U) =

M∑
m=1

πmΦ
(
u | µm, σ

2
m

)
,

M∑
m=1

πm = 1, πm ≥ 0,

where Φ(u|µm, σ
2
m)’s are the distribution functions of the Gaussian distributions N(µm, σ

2
m). The pa-

rameters πm, µm and σm are usually estimated using the expectation maximization algorithm (Bishop,
2006). This technique enables learning independent of stochastic characteristics such as the skew-
ness of data. However, the GMN has the disadvantage of complexity of denormalization because the
inverse of Gaussian mixture requires numerical computations. In this work, M = 3 is used.

The Piecewise min-max normalization (PMN) is a simple combination of the two techniques
mentioned above in that the distributional feature of data is addressed by different min-max scaling to
the left and right half of data. For a value u, the PMN is applied as follows

fp(u;U) =
1
2

u −min(U)
median(U) −min(U)

I {u < median(U)}

+

{
1
2

+
1
2

u −median(U)
max(U) −median(U)

}
I {u ≥ median(U)} ,

(3.2)

where I{·} is an indicator function. The asymmetric features of an RV data set are more faithfully
addressed by the PMN than the MMN and the GMN because, in the PMN, different normalizations
are applied to the left half and the right half of the RV data set. This normalization transforms the
median of data to 1/2 and we can retrieve the median of the data from the forecast value of 1/2
through denormalization. As in the case of the MMN, it has also the advantage of low complexity of
denormalization.

3.2. RNN methods

We use RNNs which are widely used for sequential data (Karpathy et al., 2015). Computations in
most RNN’s are composed of a sequence of 3 blocks having parameters to be updated and associated
transformations: Block 1, from the input to the hidden state; block 2, from the previous hidden state
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to the next hidden state; and block 3, from the last hidden state to the output. To construct a recurrent
network of this structure, hyperparameters should be determined: The input length, the number of
time steps of an input sequence; the hidden size; the number of units of a hidden layer; the number of
layers, and others. In practical applications, gated RNNs are used as highly effective sequence models,
which handle the issue of vanishing or exploding derivatives by creating paths through time. For a cell
of a gated RNN, we consider two structures LSTM and GRU in this work. In addition, a bidirectional
structure that depends on the whole input sequence by using not only the forward causal structure but
also the backward direction can also be considered (Schuster and Paliwal, 1997). As the structure of
the network varies according to the cell structure and the RNN direction, these are also considered as
hyperparameters (Goodfellow et al., 2016). A method for hyperparameter determination is discussed
in Section 3.3

Here we briefly explain the RNN model we use. Let the input length be given as q. For an input
sequence (x1, . . . , xq) of length q, which are normalized ratios through one of the MMN, the GMN,
or the PMN mentioned in Section 3.1. The xt at t is also represented by h0

t for later use. Although a
boldface is used here, it is actually a scalar in this work. We denote the hidden state vectors as hl

t ∈ Rn,
where t is a time step, l = 1, . . . , L is the index of layer, and n is the hidden size. The model consists
of a total of L + 1 layers, with L hidden layers and 1 output layer. Each element of the time series data
is injected into the network one at a time sequentially. Although the detailed structure for calculating
the hidden states hl

ts of the hidden layers is different for each cell structure, it is common in that hl
t−1,

from the previous time of the same layer, and hl−1
t , from the previous layer at present time, are used

as

hl
t = g

(
W l

(
hl−1

t
hl

t−1

))
,

where W l is the parameter matrix of the lth hidden layer. A detailed description of the transformation
g(·) in each cell structure and bidirectional recurrent network are given in Appendix A. For the last
hidden state hL

q , we apply an additional layer to this n-dimensional vector to get an estimate x̂q+1
of the normalized ratio of RV at time q + 1. The operation of the output layer can be expressed as
x̂q+1 = sigm(WOhL

q ), where WO ∈ R1×n is the parameter matrix. Sigmoid activation ‘sigm’ guarantees
that the estimated value is in between 0 and 1. Then, the parameter matrices are updated in the way
of minimizing the mean squared error (MSE) loss between x̂q+1 and xq+1 over all the train data.

3.3. Nested CV for hyperparameter determination

The RNN-based methods discussed in the previous subsection have various hyperparameters, such
as the RNN direction, the input length, the number of layers, and others that need to be specified. It
is important to choose good hyperparameter combination for training an RNN-based model for the
good forecast. In order to compare the forecast accuracies of two or more methods with different
hyperparameters, researchers tend to use CV (Oztekin et al., 2016). Typically, the data for training an
RNN-based model and evaluating forecast performance consist of a train set and a test set. A train set
is further divided into a train subset and a validation subset. Since there are temporal dependencies
in the data, in order to accurately simulate the real world forecast environment in which we stand in
the present and forecast the future (Tashman, 2000), we need to set the validation set comes after the
train subset, and the test set after the train set. Also, if we ignore the time sequence and choose a test
set arbitrarily, then our test set error is a poor estimate of error on an independent test set. For these
reasons, traditional k-fold CV is inappropriate when dealing with time series data. Instead, we use
the ‘Nested CV’ procedure which provides an almost unbiased estimate of the true error (Varma and
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Train

𝐷 𝐷 ⋯ 𝐷 𝐷 ⋯ 𝐷

Dataset for hyperparameter tuning (𝓓) 
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𝐷

𝛼 𝛼:

𝐷

Valid Test
𝐹𝐴

𝐹𝐴

𝐶

Training Test

Figure 3: Nested CV method.

Simon, 2006): We create multiple train/test splits and average the errors over all the splits to produce
a better estimate of model forecast error. Day forward-chaining technique which is based on method
called forward-chaining or rolling-origin evaluation (Tashman, 2000) is used in this study. A detailed
implementation of the CV is described in Section 4.4.

4. Experimental design

We elaborate how the methods described in Section 3 are applied to our data. For the purpose of
forecasting future RV values, we perform CV in exactly the same way it would be done in the actual
forecast process. That is, the models are trained on past values and their performances are tested on
future values. This type of CV can be used not only to determine hyperparameters but also to examine
the effects of normalization techniques through the stochastic characteristics inherent in the data.

Let D denote the dataset that will be used for tuning hyperparameters. First, the dataset (D) is
divided into subsets consisting of d elements. If we assume that J subsets denoted by D1,D2, . . . ,DJ

are used, the time index of the data is adjusted so that the elements of D j become {v( j−1)d+1, . . . , v jd}.
The RV values before the first element v1 of D1 are naturally indexed with values below zero. We
assume that one subset serves as a test set in the CV process. When we want to evaluate forecast
performance with a subset as the test set, we configure a train subset and a validation subset preceding
the test set so that the sizes of train subset and validation subset have a ratio of αtrain : αvalid where αtrain
and αvalid are positive integers. The validation subset is used for adopting early stopping technique
(Goodfellow et al., 2016). In the following we discuss in more detail how the RNN model training is
performed and the CV process is applied. The methods of this section as well as those in Section 3
are illustrated in Section 5.1 in a forecasting setup for RV data.

4.1. Data for training

We describe how to construct input-output pairs for training our RNN-based models discussed in
Section 3.2. Let a subset Dk for a test set be given, where k is larger than αtrain + αvalid. Then,
αtrain +αvalid consecutive subsets preceding Dk are utilized for training. When the length q of the input
data sequence for an RNN-based model is given, we use a set of q + 1 + (αtrain + αvalid)d consecutive
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RV values prior to v(k−1)d+1, which is the first value of Dk, as

{vs : (k − 1 − αtrain − αvalid) d − q ≤ s ≤ (k − 1)d} (4.1)

to construct a setUk,q of q + (αtrain + αvalid)d consecutive RV ratio values as

Uk,q = {us : (k − 1 − αtrain − αvalid) d − q + 1 ≤ s ≤ (k − 1)d} . (4.2)

Now, the normalization is based on Uk,q. We apply one of the normalization techniques given in
Section 3.1 to the values inUk,q, and make a set of normalized ratio values as{

xs = f·
(
us;Uk,q

)
: (k − 1 − αtrain − αvalid) d − q + 1 ≤ s ≤ (k − 1)d

}
.

Finally, we construct input-output pairs for RNN learning by sliding the window of length q + 1 by a
time unit over the sequence of normalized relative ratios. Then, we get (αtrain + αvalid)d input-output
pairs as {(

(xs−q, . . . , xs−1), xs

)
: (k − 1 − αtrain − αvalid) d + 1 ≤ s ≤ (k − 1)d

}
.

Among them, the first αtraind input-output pairs are used as a train subset for actual update of the
parameter matrices of RNN model and the last αvalidd pairs are used as a validation subset for adopting
early stopping technique.

4.2. Forecasting process

We describe how forecasts are made using a trained RNN-based model. Let the subset Dk to be
forecasted and the length q of the input are given. After the RNN-based model learning of Section 3.2
with the input-output pairs constructed as described in the previous subsection 4.1, for each element
vt+1 in Dk, we compute a forecast v̂t+1 by using the trained model. We begin with the previous q + 1
RV values (vt−q, . . . , vt). Then, the sequence (xt−q+1, . . . , xt) of the normalized ratios is generated by
applying the same normalization technique as in the training process to the sequence of relative ratios.
Specifically, xs = f·(us;Uk,q) for t − q + 1 ≤ s ≤ t where Uk,q is the set of RV ratios used for
training defined in the previous subsection 4.1. If an input (xt−q+1, . . . , xt) is applied to the trained
model, an output x̂t+1 is generated. To make a forecast for vt+1, we first denormalize this value by
ût+1 = f −1

· (x̂t+1;Uk,q). Then, our forecast value for vt+1 is given by v̂t+1 = vtût+1.

4.3. Evaluation measures

We have 1-step forecasts {v̂(k−1)d+1, . . . , v̂kd} for {v(k−1)d+1, . . . , vkd} in Dk computed by the method of
subsections 4.1 and 4.2. Then, forecast accuracies are usually compared by computing the measures
given in the following:

Root mean squared error; RMSE =
√

MSE, MSE =
1
d

kd∑
t=(k−1)d+1

(vt − v̂t)2. (4.3)

Mean absolute error; MAE =
1
d

kd∑
t=(k−1)d+1

|vt − v̂t | . (4.4)
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Mean absolute percent error; MAPE =
100%

d

kd∑
t=(k−1)d+1

∣∣∣∣∣vt − v̂t

vt

∣∣∣∣∣ . (4.5)

4.4. Application of nested CV

We elaborate the CV process adopted in this work. To evaluate the forecast performance of the RNN-
based method for a combination of hyperparameters, the forecast accuracy is measured on the last
K subsets DJ−K+1, . . . ,DJ . In other words, we put each of the last K subsets as a test set and evalu-
ate the forecast performance through K different learning and forecast processes using the methods
mentioned in subsections 4.1 and 4.2. This process is applied to actual forecasts in the same way,
so that the CV simulates exactly what we want to do. The CV estimate of the overall performance
criteria is calculated by simply the average of the forecast performances on the K consecutive sub-
sets {DJ−K+1, . . . ,DJ} as Ce = (1/K)

∑J
j=J−K+1 FA j, where FA j is a forecast accuracy such as MSE or

those in (4.3)–(4.5) and others. The hyperparameters are determined to minimize Ce. This procedure
is illustrated in Figure 3.

For each of possible hyperparameter combinations, we perform the above-mentioned process to
get the CV estimate. Then, based on the results from this exhaustive CV process, the combination of
hyperparameters to be used for the actual forecast is determined.

5. Results

Recall that the total number of RV values for each asset is T = 3344. Hyperparameter tuning and
forecasting are made blockwise with block length d = 150. Let an asset be given. Let D0 be the block
of the first 344 observations. For notational convenience, we use the time index so that v−343 be the first
observation and D0 = {v−343, . . . , v0}. Let D1, . . . ,D20 be the blocks of the size d of the remaining 3000
observations so that D1 = {v1, . . . , vd}, . . . ,D20 = {v19d+1, . . . , v20d}. We wish to compare 1-step out-of-
sample forecasts of the latest 450 RV values in D18, D19, D20 by the proposed RNN methods and those
by the benchmarking models of the classical AR model and the SVR (support vector regression), the
DNN, and the CNN. We use J = 17 blocks D1, . . . ,D17 for hyperparameter tuning. Since the forecast
target has 450 elements, the test set consists of three latest blocks D18, D19, and D20. To determine the
hyperparameters for forecasting by the nested CV method in Section 4.4, we take K = 5 and utilize
subsets D13,D14, . . . ,D17 as test data sets for the nested-CV. For convenience, we denote ∪17

j=13D j as
DCV. The sizes of train and validation subsets are set to αtraind = 10d and αvalidd = 2d, respectively.
The CV process gives three hyperparamter combinations for each normalization technique with which
the RNN-model is developed for forecast. For each hyperparameter combination and a normalization
technique, the weight W is first estimated by the deep learning models of LSTM or GRU described
in Appendix A using data in D1, . . . ,D17. This weight is used for computing 1-step out-of-sample
forecast of elements in D18. For forecasts of elements in D19 and D20, the weight W is newly estimated
blockwise: For j = 1, 2, for forecasting elements in D18+ j, we use the weights newly estimated using
data D6+ j, . . . ,D17+ j. We now have all forecast values of the last 450 RV values in blocks D18, D19,
and D20, which are compared with the corresponding observed values by the evaluation measures
RMSE, MAE, MAPE in Section 4.3. More detailed modeling procedure is illustrated in Section 5.1.
The CV results and forecasted results are given in Section 5.2 and in Section 5.3, respectively.



Forecasting realized volatility using data normalization and recurrent neural network 115

S&
P

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9 Cluster 10

RU
SS

EL
L

DJ
IA

NA
SD

AQ
FT

SE
CA

C
DA

X
AE

X
SS

M
I

0 1 2 3

IB
EX

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Figure 4: Histograms of relative ratio of RV values for each cluster. Each row indicates the results for the clusters
of a stock market index. In all cases, the histograms are plotted for the same range from 0 to 3.

5.1. An illustration of the modeling procedure

This subsection illustrates the methods in Sections 3, 4 in the setup of the first paragraph of Section
5. Recall that data lengths are all T = 3344. We first split the original RV data {v−343, . . . , v3000}

into a sequence D0,D1,D2, . . . ,D20 such that D0 = {v−343, . . . , v0}, D1 = {v1, . . . , vd}, . . . ,D20 =

{v19d+1, . . . , v20d}. Our aim is constructing 1-step forecasts of elements in D18,D19,D20.

5.1.1. Hyperparameter tuning and forecasting D18,D19,D20

Hyperparameters are first tuned as in (i) and forecastings are next made as in (ii)–(iv).

(i) Hyperparameter tuning - nested CV method : Hyperparameters are determined by the nested CV
method of Section 3.3. We use J = 17 blocks D1 − D17 for hyperparameter tuning as in Section
4.4 with the αtrain = 10 blocks for training, the αvalid = 2 blocks for validation for early stopping
and the last K = 5 blocks D13 − D17 for testing. First, forecast of D13 and forecast accuracy
FA13 are computed as follows. We train the RNN forecast model with train data D1 − D10,
validation data D11 − D12 and test data D13 as in Section 5.1.2 below. For each vt in D13, the
trained RNN produces forecast of v̂t. We evaluate the forecast accuracy FA13 by comparing the
forecasted values v̂t and the actual values vt in D13. Next, with train data D2 − D11, validation
data D12−D13 and test data D14, FA14 is computed. This procedure is repeated to compute FA15,
FA16 and FA17. The overall performance measure is Ce = (1/5)(FA13 + · · · + FA17). We choose
the hyperparameter θ which minimizes Ce. For FA, we use the MSE of Section 4.3.

(ii) Weight estimation using data D6 − D17 and forecasting D18: With θ obtained in (i), the RNN
estimates weight W using train data D6 −D15 of αtrain= 10 blocks and validation data D16 −D17
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Figure 5: Histograms of normalized relative ratios for data subsets used in CV. MM normalization technique
is adopted. Forecasted results are obtained from the RNN-based models trained with the best hyperparameter

combination given in Table B.1 in Appendix B.

of αvalid = 2 blocks for early stopping by a method similar to Section 5.1.2 (i)–(iii) below. With
this weight W, for each vt in D18, the trained RNN produces 1-step forecast v̂t of vt following a
procedure similar to that in Section 5.1.2 (iv)−(vi) below.

(iii) Weight updating usng data D7 − D18 and forecasting D19.

(iv) Weight updating using data D8 − D19 and forecasting D20.

5.1.2. Forecasting elements of D13 using data D1 − D12

One-step forecasts {v̂12d+s, s = 1, . . . , d} of D13 using D1 − D12 is constructed as discussed in Section
4.2 and is illustrated in (i)−(vi) below. The illustration is given for PM normalization. We first make
ratio transformation to the whole data ut = vt/vt−1, t = −343, . . . , 3000. Let an input length q and
other hyperparameters be given. Since the forecast target is D13, we have k = 13. Now Uk,q in (4.2)
corresponding to the set of (αtrain + αvalid) = 12 train-validation blocks for PMN of Section 3.1 and
for the RNN input-output pairs of Section 4.1 isUk,q = {ut : −q + 1 ≤ t ≤ 12d}.

(i) Bring ratio transformed data: ut = vt/vt−1, t = −q + 1, . . . , 12d.

(ii) PMN for normalization: In the piecewise min-max normalization (PMN) (3.2) of Section 3.1,
we use the minimum m, the median Me and the maximum M ofUk,q = {u−q+1, u−q+2, . . . , u12d}.
We apply PMN in (3.2) to {u−q+1, . . . , u12d} and obtain normalized data

xt =
1
2

ut − m
Me − m

if ut < Me and xt =
1
2

+
1
2

ut − Me

M − Me
if ut ≥ Me, t = −q + 1, . . . , 12d.

(iii) RNN training: Update the weight W of the RNN in Section 3.2 using (input, output) pairs
((xs−q, . . . , xs−1), xs), s = 1, . . . , 12d. The first αtraind = 10d pairs are used for training and
the remaining αvalidd = 2d pairs are used for validation for early stopping.
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Figure 6: Histograms of normalized relative ratios for data subsets used in CV. GM normalization technique
is adopted. Forecasted results are obtained from the RNN-based models trained with the best hyperparameter

combination given in Table B.2 in Appendix B.

Table 3: Hyperparameter settings for CV

Parameter Settings
RNN direction Uni, Bi

RNN cell LSTM, GRU
Input length (q) 3, 4, 5, 6, 7, 8, 9, 10

Number of layers (L) 2, 4, 8, 16
Number of hidden units (n) 4, 8, 16, 32

(iv) Forecasting normalized data of D13: Inputting (x12d−q+s, . . . , x12d−1+s) to the RNN trained in (iii),
compute the output x̂12d+s, the 1-step forecast of x12d+s, s = 1, 2, . . . , d.

(v) Inverse PMN for denormalization: We apply the inverse transform of PMN in (ii) to compute
forecast û12d+1, . . . , û13d

û12d+s = m + 2x̂12d+s(Me − m), if x̂12d+s <
1
2

and û12d+s = Me + 2
(
x̂12d+s −

1
2

)
(M − Me) ,

if x̂12d+s ≥
1
2
, s = 1, 2, . . . , d.

(vi) Inverse ratio transformation for forecasts of D13 : v̂12d+s = v12d+s−1û12d+s, s = 1, . . . , d.

5.2. CV results
5.2.1. Descriptive analysis

Before applying CV, we first perform descriptive analysis on the relative ratio of RV values. For
the relative ratio of RV values corresponding to RV values in D = ∪17

j=1D j, we perform K-means
clustering, which is a widely used unsupervised learning algorithm to cluster the data. Taking q = 10,



118 Yoonjoo Lee, Dong Wan Shin, Ji Eun Choi

K-means clustering is applied to the set of 10-dimensional vectors {(ut−10, . . . , ut−1) : vt ∈ D}, and, for
each cluster c, we see the probability distribution of {ut : (ut−10, . . . , ut−1) is in cluster c}. Here, we set
the number of clusters as 10 by applying the elbow method (Kodinariya and Makwana, 2013). The
results are shown in Figure 4. As can be seen in the figure, although the 10 consecutive relative ratios
are similar, i.e., contained in the same cluster, the next value is still randomly distributed. Therefore,
forecasts by the RNN-based model trained to minimize the average loss are more likely to show
some averaged results than the correct ones. Another dominant feature observed from Figure 6 is
asymmetry: All the distributions of relative ratios in Figure 6 are significantly right skewed. This
point will be discussed in terms of normalization in Section 5.2.3 through the CV results.

5.2.2. Chosen hyperparameters for forecast

As discussed in Section 4.4, the main purpose of the CV is to select the optimal hyperparameters for
the RNN methods. For the performance measure FA in Section 4.4, we use MSE. The hyperparam-
eters RNN direction, RNN cell, input length (q), number of layers (L), hidden size (n) are chosen
from the candidates in Table 3 by using the nested CV method. The candidate values are typically
considered in the literature (Goodfellow et al., 2016). We applied early stopping technique and the
other parameters are set to the common values widely used in the literature: MSE loss function; Adam
optimizer; epochs = 1000; batch size = 40; learning rate = 0.001.

We perform the CV process for each normalization technique described in Section 3.1. According
to the CV errors Ce, we take the best three hyperprameter combinations of RNN direction, RNN
cell, q, L, and n. The chosen parameter combinations are given in Tables B.1– B.3 in Appendix B.
Forecasts are later made in Section 5.3 by averaging three forecasts by the RNN methods with the
three chosen hyperparameter combinations.

5.2.3. Analysis of CV results

Here, we analyze the stochastic characteristics of the data that can be exploited in the actual forecast.
The analysis is performed with the results obtained in the CV process. Since the RNN-based model
forecasts the relative ratio of RV values first, we focus on the analysis of this. Specifically, we examine
how the normalization techniques affect the forecast of the relative ratios.

Figures 5–7 show the distributions of normalized relative ratios xs for data subsets used in CV
with the MM, GM, and PM normalization techniques given in Section 3.1, respectively. For each
normalization technique, the histogram labeled ‘Data’ is for the set ∪17

k=13{ f·(us;Uk,q) : vs ∈ Dk} for
each index, where q is the input length of the best hyperparameter combination. On the other hand,
the ones labeled ‘Forecast’ are for the forecasted results from the five RNN methods: One for each
data subset, trained with the best hyperparameter combination given in Table B.1 in Appendix B.
These forecasted results can be expressed by {x̂s : vs ∈ DCV}. Consider the first Figure 5 for MMN.
Forecasted results account for only part of the middle of the data. Also, we can see the discrepancy
between the modes of the data and the forecasted results. The data are usually right-skewed but the
forecasted results show relatively symmetric distributions. From these observations, it can be checked
that the RNN-based method neglects data asymmetry and gives some averaged results instead of exact
ones, as we have expected in Section 5.2.1 via clustering to data.

As we expected for GMN, the data show uniformly distributed histograms as in Figure 6. Although
the forecasted results explain only the middle part of the data as above, it can be seen that the median
is generally matched well and asymmetry is neglected.

As described in Section 3.1, PMN technique applies two different affine transformations based on
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Figure 7: Histograms of normalized relative ratios for data subsets used in CV from various indices. PM normal-
ization technique is adopted. Forecasted results are obtained from the RNN-based models trained with the best

hyperparameter combination given in Table B.3 in Appendix B.

the median. From Figure 7, it can be seen that the right-skewness of the data is partially alleviated
through the application of this normalization technique. In the case of the forecasted result, unlike
MMN and GMN, it can be checked that the mode of the data is well-matched.

In Figure 8, distributions of forecasted ratios ût and the observed ratios ut are illustrated. The
curve labeled ‘Data’ indicates the distribution of the set {us : vs ∈ DCV} for each index. Each of other
curves is obtained by denormalizaing the forecasted results shown in Figures 5–7 according to the
normalization technique corresponding to its label. For example, a curve with label ‘GM’ indicates
the distribution of ∪17

k=13{ f
−1
g (x̂s;Uk,q) : vs ∈ Dk} with q of ‘Rank 1’ for each index from Table B.2

in Appendix B. As can be seen in the figures, forecasted results via GMN account for a relatively
small range of data compared to other techniques based on affine transformations because the inverse
of the Gaussian mixture squashes the range of the values in our case. In many cases, the results via
the MMN show different modes when the distribution of ratios of the data is skewed, and the PMN
compensates for this. Thus, we may expect that the PMN technique shows better performance than
the other techniques in that it preserves the proportions of the range that accounts for the data and
matches the mode of the data well.

5.3. Forecast results

We perform forecasts for data subsets D18, D19, and D20. The forecast results by the RNN based mod-
els and other benchmarking models are compared through various performance measures discussed
in Section 4.3. As a benchmarking classical model, we consider the AR model of order p, AR(p),
which is a statistical counterpart of the current RNN-based model:

vt = ϕ0 +

p∑
i=1

ϕivt−i + εt, (5.1)
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Figure 8: Distributions of relative ratios for data subsets used in CV. Forecasted results are obtained by denor-
malizing the results labeled ‘Forecast’ shown in Figures 5–7.

Table 4: The MAPE(%) of the forecast models

Index Benchmarking models RNN-O RNN-R
AR SVM DNN CNN MM GM PM MM GM PM

S&P 500 28.96 53.84 70.16 48.93 32.72 37.95 30.22 26.65 24.01 22.97
RUSSELL 2000 24.96 31.33 35.43 27.34 24.27 25.00 22.06 24.17 23.25 19.80

DJIA 28.36 49.88 66.92 48.34 42.23 41.37 44.02 26.34 23.97 22.59
NASDAQ 25.68 43.24 44.42 34.50 28.87 29.54 22.88 24.35 22.72 21.54
FTSE 100 19.46 24.38 30.74 21.97 19.70 20.49 18.14 18.96 18.71 17.88
CAC 40 21.25 28.00 34.39 25.59 25.52 26.73 20.79 20.24 19.84 18.91

DAX 22.51 29.25 38.46 28.09 42.78 29.24 33.14 22.64 22.09 21.12
AEX 21.38 27.87 32.58 25.03 24.37 25.05 21.84 20.52 20.18 19.18
SSMI 16.17 18.93 28.39 17.89 16.79 17.39 15.66 16.10 15.38 15.18

IBEX 35 20.42 25.17 35.29 27.37 25.05 27.95 21.95 20.61 20.07 18.96

where ϕ = (ϕ0, . . . , ϕp)′ are the parameters of the model, and {εt}t≥0 is a sequence of regression error.
The autoregression order p is determined by the minimum Bayesian information criterion (BIC).
Other important models of the support vector machine (SVM), the deep neural network (DNN), and
the convolutional neural network (CNN) are also considered as benchmarking models. While the
CNN was originally applied to image analysis, in many recent studies, the CNN has been applied to
forecasting of time series such as stock price, volatility, and many others, see Vidal and Kristjanpoller
(2020), Elalem et al. (2023), Liang et al. (2022), Choi and Shin (2022). This is because CNN captures
local features of a time series and has a lower computational cost than the RNN. The DNN and the
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Table 5: The MAE × 1000 of the forecast models

Index Benchmarking models RNN-O RNN-R
AR SVM DNN CNN MM GM PM MM GM PM

S&P 500 1.18 1.85 2.27 1.63 1.25 1.34 1.18 1.16 1.09 1.09
RUSSELL 2000 1.37 1.71 1.72 1.44 1.32 1.33 1.28 1.37 1.35 1.34

DJIA 1.17 1.76 2.24 1.65 1.49 1.45 1.53 1.14 1.09 1.08
NASDAQ 1.25 1.83 1.81 1.52 1.31 1.32 1.16 1.23 1.19 1.16
FTSE 100 1.00 1.20 1.36 1.08 0.99 1.01 0.96 0.98 1.01 0.98
CAC 40 1.52 1.76 2.04 1.66 1.63 1.66 1.49 1.48 1.52 1.46

DAX 1.57 1.86 2.11 1.71 2.27 1.72 1.91 1.56 1.59 1.55
AEX 1.40 1.68 1.77 1.49 1.46 1.44 1.39 1.35 1.41 1.36
SSMI 0.97 1.13 1.44 1.03 0.99 1.00 0.96 0.99 0.98 0.98

IBEX 35 1.88 2.25 2.69 2.20 2.09 2.24 1.99 1.90 1.96 1.84

Table 6: The RMSE × 1000 of the forecast models

Index Benchmarking models RNN-O RNN-R
AR SVM DNN CNN MM GM PM MM GM PM

S&P 500 1.76 2.38 2.64 2.10 1.77 1.84 1.76 1.76 1.74 1.77
RUSSELL 2000 1.75 2.21 2.07 1.83 1.71 1.72 1.71 1.78 1.78 1.78

DJIA 1.83 2.33 2.65 2.15 2.02 1.97 2.12 1.82 1.82 1.81
NASDAQ 1.72 2.33 2.17 1.93 1.75 1.76 1.70 1.75 1.74 1.73
FTSE 100 1.54 1.78 1.79 1.62 1.52 1.54 1.52 1.51 1.57 1.53
CAC 40 2.41 2.63 2.75 2.50 2.45 2.48 2.43 2.35 2.50 2.38

DAX 2.34 2.65 2.72 2.43 2.94 2.42 2.65 2.32 2.44 2.38
AEX 2.43 2.63 2.67 2.45 2.42 2.41 2.46 2.35 2.54 2.41
SSMI 1.53 1.77 1.89 1.57 1.54 1.56 1.54 1.54 1.59 1.60

IBEX 35 3.77 4.17 4.27 3.94 3.83 4.03 3.98 3.71 3.97 3.75

CNN are applied to the original RV data with the min-max normalization as is the common practice.
The AR and the SVM are applied to the original RV as is the usual practice. For the SVM, we consider
the radial basis function (RBF) as the kernel function. We also consider the kernel parameters C
and γ for the SVM which are optimized over {0.01, 0.1, 10, 100} and {0.25, 1, 4}, respectively. The
hyperparameters (q, L, n) for the DNN are chosen by the same method for RNN as in Section 5.2.2.
For the CNN, the 1D-CNN with a size 3 kernel is considered, the number of filter is optimized over
{8, 16, 32, 64}, and the number of layer is optimized over {2, 3}. The RNN models with original RV
are also compared. The AR model and the SVM update the coefficients every time when an additional
observation is available, while the RNN, the DNN, and the CNN update weight matrix W every 150
times when all the additional observations in the block of length 150 are available.

For the RNN methods with ratio transformation, forecasts are made for RV elements in D18, D19,
and D20. For each asset, all of the best 3 hyperparameter combinations given in Tables B.1–B.3 are
used for forecast. For each hyperparameter combination, we perform forecast five times. Then, as
an ensemble method, the final forecast results are made by averaging the total of 15 forecast results,
five forecasts from each of the three hyperparameter combinations. Forecasts by other models are
constructed similarly. Tables 4–6 show forecast results for the forecasting performance criteria of
MAPE, MAE, and RMSE. In the tables and discussions below, for simplicity, we write “O” and “R”
for orignal RV and ratioed RV, respectively; “MM”, “GM”, “PM” for min-max, Gausssian mixture,
and piecewise min-max, respectively, normalization. Therefore, for example, RNN-R-PM denote the
RNN for ratioed RV with PM. Note that RNN-R-PM adopts our main strategy of resolving long-
memory of and addressing asymmetry of RV data sets by R and PM, respectively. We discuss general
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findings from the results of Tables 4–6.

(i) RNN-R-PM produces generally the best results. The superiority of the RNN-R-PM model to the
other models holds strongly in the MAPE performance being best in all the 10 assets (Table 4)
and somewhat strongly in the MAE performance being best in 6 assets out of 10 assets (Table 5).
In the RMSE performance, even though RNN-R-MM tends to produce the best results, RNN-
R-PM has also good RMSE performance not much worse than that of the best model as shown
in Table 6. For all the 10 assets, the RNN-R-PM is considerably better than the benchmarking
the AR, the SVM, the DNN, and the CNN models in all of MAPE, MAE, and RMSE with an
exception of the AR for asset SSMI in RMSE.

(ii) RNN-O produces much better forecasts than the DNN and somewhat better than the CNN except
for 1 asset of the DAX out of 10 assets. Recall that RNN-O, the DNN, and the CNN all apply
to the original RV data with the same MM normalization. Recall also that original RV data sets
have long memory of persistent strong autocorrelation as discussed in Section 2. The RNN-O
takes well advantage of the long memory of the RV data sets and produce better forecasts than
the DNN and the CNN which do not explicitly address the serial dependence.

(iii) Ratio transformation generally yields forecast improvement. In forecast performances of RNN-
O and RNN-R, R is generally better than the corresponding O except for RMSE of RNN-R-PM
model. For example, RNN-R-MM is better than RNN-O-MM. The better forecast performance
of R than O is a consequence of resolved long memory in ratioed RV as discussed in Section 2.

(iv) PM is better than MM and GM for the RNN. Superiority of PM over MM and GM holds both
in RNN-O and in RNN-R in all of MAPE, MAE and RMSE with an excepton that, in RMSE
performance for RNN-R, MM tends to be best but PM is not far away from the best. This better
performance of PM than MM and GM is a result of better exploiting of the asymmetry in the
RV or in the ratioed RV as in (2).

6. Conclusion

We considered recurrent neural network (RNN) forecast of realized volatility (RV) of 10 stock price
indices, four from the US, and six from the Europe. We took three different normalization methods
into the relative ratio of RV to adjust the range of data to fit the RNN based model. The piecewise
min-max (PM) normalization is proven to faithfully address the asymmetric data distribution feature
resulting in better forecasts than min-max or Gaussian mixture normalizations. Also two RNN-variant
models LSTM, GRU and bidirectional of them are utilized. We tested the combinations to obtain
the optimal models by applying the nested cross-validation (CV). The RNN-based model with PM
normalization and ratio transformation (RNN-R-PM) outperformed other RNN models and the bench
marking models of AR (autoregressive regression), the SVM (support vector machine), the DNN
(deep neural network), and the CNN (convolutional neural network) model in most of the data sets.
In particular, the RNN-R-PM performed substantially better than other models in all 10 the data sets
in terms of MAPE. Forecasts via ratioed RV data were shown to be better than those based on RV
themselves.

Appendix A: Structure of recurrent neural network

Here, we briefly introduce the RNN structures based on the framework provided in Karpathy et al.
(2015). We denote the hidden state vectors as hl

t ∈ Rn, where t = 1, . . . , q is regarded as time,
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l = 1, . . . , L is the depth and n is the hidden size. The model consists of L hidden layers and 1 output
layer with a total of L + 1 layers.

Cell structures for gated RNNs

Although detailed structure for calculating the hidden states hl
ts of the hidden layers is different for

each model, it is common in that hl
t−1, which is from the previous time of the same layer, and hl−1

t ,
which is from the previous layer at present, are used. In the following, parameter matrices are denoted
by W with the corresponding subscript and superscript.

LSTM

LSTM, one of variants of RNN, is designed to prevent gradient vanishing and exploding problems in
RNN. This model has cell states and uses input, forget, and output gates for each time step to control
what information to throw away from and store in the cell state and update the old cell state. The
detailed expression of the steps in LSTM is as follows.


ilt
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sigm
sigm
tanh
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hl−1
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)
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t = fl

t � cl
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t,

hl
t = ol

t � tanh(cl
t),

where ilt, fl
t , ol

t, gl
t ∈ Rn, W l ∈ R4n×2n, and � means element-wise product. In this work, since h0

t
is a scalar, W1 ∈ R4n×(n+1). Also, the activation functions, sigmoid function ‘sigm’ and ‘tanh’, are
applied element-wise. Note that ‘sigm’ and ‘tanh’ have ranges of [0, 1] and [−1, 1], respectively. The
three vectors ilt, fl

t and ol
t act as input, forget, and output gates which are used to control the cell state.

Sigmoid activation derives values from 0 to 1 to keep the model differentiable. The gl
t vector through

tanh acts as a new candidate, with a value between −1 and 1, and reflected to cell state as vector ilt
adjusts. The structure of the LSTM solves the long-term dependency problem in that the gradient of
the cell state uninterrupted during backpropagation even if the length of the input sequence is long.

GRU

GRU introduced by Cho et al. (2014) is a simpler model than the standard LSTM model. It combines
the forget and input gates into a single ‘update’ gate, also it merges the cell state and hidden state. The
detailed expression of the steps in GRU is as follows.(
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where rl
t, zl

t ∈ Rn, W l
r ∈ R2n×2n, W l

g,W
l
x ∈ Rn×n. For the same reason as in the case of LSTM,

W1
r ∈ R2n×(n+1) and W1

x ∈ Rn×1.
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Figure A.1: Considered structures for RNN model.

Bidirectional RNN

A bidirectional RNN connects two hidden layers of opposite directions to the same output. With this
structure, it is possible to get information from backward and forward states which do not have any
interactions each other simultaneously (Schuster and Paliwal, 1997). The structure of a bidirectional
model is illustrated in Figure A.1(b). We call a typical RNN model described above a unidirectional
model, which is illustrated in Figure A.1(a), to distinguish it from a bidirectional model. Specifically,
in the bidirectional model, bidirectional structure is applied to the bottom L − 1 layers except the last
layer.

Appendix B: Hyperparameters tuned by the nested CV

According to the CV errors, we take the best three hyperprameter combinations for RNN-R, which
are applied to ratioed RV, and these are given in Tables B.1–B.3.

Table B.1: The best three hyperparameter combinations for MM normalization

Index Rank Direction Cell q L n Index Rank Direction Cell q L n

S&P
1 Uni GRU 10 2 8

RUSSELL
1 Uni GRU 10 2 8

2 Uni GRU 10 2 4 2 Uni GRU 8 2 4
3 Uni GRU 9 2 16 3 Uni GRU 9 2 4

DJIA
1 Uni LSTM 10 2 8

NASDAQ
1 Uni LSTM 8 2 4

2 Uni GRU 8 2 16 2 Uni LSTM 10 2 8
3 Bi GRU 10 2 16 3 Uni LSTM 10 2 16

FTSE
1 Uni LSTM 9 2 8

CAC
1 Uni GRU 7 2 16

2 Uni LSTM 9 2 16 2 Uni GRU 6 2 16
3 Uni GRU 9 2 8 3 Uni LSTM 9 2 16

DAX
1 Uni GRU 6 2 16

AEX
1 Uni GRU 10 2 16

2 Uni GRU 8 2 16 2 Uni LSTM 6 2 16
3 Uni GRU 9 2 16 3 Uni GRU 7 2 16

SSMI
1 Bi GRU 7 2 16

IBEX
1 Uni LSTM 9 2 16

2 Bi GRU 8 2 16 2 Uni GRU 7 2 8
3 Bi GRU 10 2 16 3 Uni GRU 7 2 16
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Table B.2: The best three hyperparameter combinations for GM normalization

Index Rank Direction Cell q L n Index Rank Direction Cell q L n

S&P
1 Bi GRU 8 2 16

RUSSELL
1 Bi LSTM 10 4 16

2 Bi GRU 10 2 8 2 Bi GRU 5 8 16
3 Uni GRU 10 2 16 3 Bi LSTM 5 2 16

DJIA
1 Bi GRU 6 2 8

NASDAQ
1 Uni GRU 6 4 16

2 Uni GRU 10 2 8 2 Uni GRU 9 4 16
3 Bi GRU 10 4 8 3 Uni LSTM 6 2 16

FTSE
1 Bi GRU 7 8 16

CAC
1 Bi GRU 6 4 16

2 Bi GRU 10 8 16 2 Bi GRU 5 4 16
3 Bi GRU 8 4 16 3 Bi GRU 9 2 16

DAX
1 Uni GRU 6 4 16

AEX
1 Bi GRU 6 2 16

2 Bi GRU 7 4 16 2 Bi GRU 6 4 16
3 Bi GRU 8 4 16 3 Uni GRU 6 2 16

SSMI
1 Uni GRU 6 2 16

IBEX
1 Uni GRU 9 2 8

2 Bi GRU 7 8 16 2 Uni GRU 6 4 16
3 Uni GRU 10 4 16 3 Bi GRU 7 2 16

Table B.3: The best three hyperparameter combinations for PM normalization

Index Rank Direction Cell q L n Index Rank Direction Cell q L n

S&P
1 Uni GRU 8 2 16

RUSSELL
1 Bi LSTM 10 4 16

2 Bi GRU 10 2 4 2 Bi LSTM 6 4 16
3 Uni LSTM 10 2 4 3 Bi LSTM 5 2 16

DJIA
1 Bi GRU 6 8 16

NASDAQ
1 Bi GRU 10 4 16

2 Bi GRU 7 8 16 2 Bi GRU 8 8 16
3 Bi LSTM 9 4 16 3 Bi LSTM 7 4 16

FTSE
1 Bi GRU 7 4 8

CAC
1 Bi GRU 10 8 16

2 Bi GRU 6 4 16 2 Bi GRU 5 4 16
3 Uni GRU 9 4 4 3 Bi GRU 6 4 4

DAX
1 Uni LSTM 6 4 8

AEX
1 Bi LSTM 7 4 16

2 Uni LSTM 5 4 16 2 Uni LSTM 10 2 8
3 Bi GRU 6 4 16 3 Bi LSTM 5 4 16

SSMI
1 Bi LSTM 10 2 16

IBEX
1 Bi GRU 10 8 16

2 Uni LSTM 6 2 8 2 Uni GRU 6 4 8
3 Uni LSTM 5 2 4 3 Bi GRU 9 8 16
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