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Abstract
Most functional magnetic resonance imaging (fMRI) studies in resting state have assumed that the functional

connectivity (FC) between time series from distinct brain regions is constant. However, increased interest has
recently been in quantifying possible dynamic changes in FC during fMRI experiments. FC study may provide
insight into the fundamental workings of brain networks to brain activity. In this work, we focus on the specific
problem of estimating the dynamic behavior of pairwise correlations between time courses extracted from two
different brain regions. We compare the sliding-window techniques such as moving average (MA) and exponen-
tially weighted moving average (EWMA), dynamic causality with vector autoregressive (VAR) model, dynamic
conditional correlation (DCC) based on volatility, and the proposed alternative methods to use differencing and
recursive residuals. We investigate the properties of those techniques in a series of simulation studies. We also
provide an application with major depressive disorder (MDD) patient fMRI data to demonstrate studying dynamic
correlations.
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1. Introduction

Spontaneous brain activity measured by functional magnetic resonance imaging (fMRI) has provided
the evidence that the human brain is intrinsically organized into large-scale functional networks. Func-
tional magnetic resonance imaging can provide evidence for functional specialization and integration
via its ability to simultaneously localize neural activity in the entire brain. Friston et al. (1993) defined
functional connectivity (FC) as the temporal correlation between spatially remote neurophysiological
events. FC is one way to characterize such interactions. Understanding functional connectivity within
the brain is crucial to understanding neural function, which supports highly distributed neural circuits.

Temporally varying information provides insight into the fundamental properties of brain net-
works. However, most fMRI studies have assumed that the essential connectivity between time series
from distinct brain regions is constant. Recently there have been increasing attempts to quantify the
dynamic changes in FC, such as Lindquist et al. (2014).

Though it is of increasing importance, interpreting temporal fluctuations in FC is difficult due
to low signal-to-noise ratio, physiological artifacts, and variation in BOLD signal mean and variance
over time (Hutchison et al., 2013). For these reasons, it is often difficult to determine whether observed
fluctuations in FC should be attributed to neuronal activity or whether they are due to random noise,
and thus research is still ongoing in this area.
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Most current approaches to examining functional connectivity (FC) implicitly assume that rela-
tionships are constant throughout the length of the recordings. However, investigations of intrinsic
brain organization based on resting-state fMRI provides the presence and potential of temporal vari-
ability. Temporal trends in the occurrence of different FC states motivate theories regarding their
functional roles and relationships with vigilance/arousal.

A variety of other approaches to identify FC states are also possible, including using topological
descriptions of brain connectivity as features, e.g., modularity or community membership (Bassett et
al., 2011; Jones et al., 2012; Kinnison et al., 2012). Lindquist et al. (2007) detected dynamic changes
in BOLD response using EWMA related approach. Formal models for detecting change points in
connectivity are introduced by Hampson et al. (2002), Robinson et al. (2010). Cribben et al. (2012)
and Aston and Kirch (2012) proposed other promising approaches to improve methods for identifying
FC states and state transitions. Huang et al. (2019) proposed windowless dynamic correlation using
a heat kernel. Recently, phase synchronization (PS) methods were proposed as a measuring method
of the level of synchrony between time series from two different regions of interest (ROI)s in the
brain (Glerean et al., 2012; Pedersen et al., 2018). Honari et al. (2021) suggested assessing the
relationship between signals from different brain regions and measuring their phase synchronization
(PS) across time. Kim et al. (2021) proposed the change-point estimation based on random matrix
theory for the epilepsy fMRI. They utilized a PS metric and a sliding window for instantaneous phase
synchronization (IPS).

Dynamic functional connectivity (DFC) uses the correlations with the fMRI time series according
to the time-points. This temporally varying information may be used to provide insight into the funda-
mental properties of brain networks. Here the correlation measurement method is an issue in studying
functional connectivity. It is often difficult to determine whether observed fluctuations in FC should
be due to neuronal activity or random noise. Thus significant research is still in need in the area. In
particular, more research should be needed to add the appropriate analysis strategy.

This paper focuses on pairwise correlations between time courses from two brain regions. We
consider the most commonly used sliding-window approach (Chang and Glover, 2010; Handwerket
et al., 2012), EWMA, as proposed in Lindquist et al. (2007), the recently suggested volatility model-
based DCC approach in Lindquist et al. (2014), and VAR model-based dynamic causality approach.
In particular, we try the method with the difference in time series and a moving model with recursive
residuals. Overall, we suggest that the study of time-varying aspects of FC can unveil flexibility in
the operational coordination between different neural systems. The exploitation of these dynamics
and the corresponding FC estimation method may improve our understanding of behavioral shifts and
adaptive processes.

This paper is organized as follows. Section 2 provides pairwise correlation estimation methods.
Section 3 gives simulation results, and the final discussions are in Section 4.

2. Methods

In this section, we set up the problem for pairwise correlation and introduce its estimation methods
for dynamic connectivity.

The bivariate time series y1t and y2t, measured over two separate ROIs in the brain, at equally
spaced time-points t = 1, . . . ,T . Let yt = (y1t, y2t)′ be a vector containing the values of both time
series at time-point t. Assume that

yt = µt + et, (2.1)
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where µt = (µ1t, µ2t)′ is the conditional mean of yt using all information in the time series observed
up to time t, denoted Et(yt). The noise term et has mean zero and its conditional covariance matrix at
time t as

Σt =

(
σ2

1,t σ12,t

σ12,t σ2
2,t

)
. (2.2)

The diagonal terms in (2.2) represents the conditional variance of yi,t using all the information in the
time course up to time t. σ2

i,t is typically referred to as the volatility of the time series in the finance
literature. The off-diagonal term is σ12,t = ρtσ1,tσ2,t where

ρt =
Et−1

[(
y1,t − µ1,t

) (
y2,t − µ2,t

)]√
Et−1

[(
y1,t − µ1,t

)2
]

Et−1

[(
y2,t − µ2,t

)2
] (2.3)

represents the conditional correlation coefficient. This definition shows that the conditional correlation
at time t relies on information that is obtained up to time t − 1. The quantity lies in [−1, 1].

Without loss of generality we assume that µt = 0 and therefore yt = et. The conditional covariance
matrix in (2.2) can be written as

Σt = DtRtDt, (2.4)

where Dt is a diagonal matrix such as Dt = diag{σ1,t, σ2,t} and Rt is the correlation matrix as

Rt =

(
1 ρt

ρt 1

)
. (2.5)

Our primary interest is in developing estimation of the conditional covariance whose components
are σ1,t, σ2,t and ρt. In the following section, we discuss several methods for our comparison.

2.1. Sliding-window approach

The simplest approach to estimating the elements of the covariance matrix is to use the sliding-window
technique. A time window of fixed length w is selected, and data points within the window are used
to calculate the correlation coefficients. The window is moved across time, and a new correlation
coefficient is computed for each time-point.

Chang and Glover (2010) define the sliding-window correlation at time t at the resting-state as
follows:

ρt =

∑t+w−1
s=t y1,sy2,s√(∑t+w−1

s=t y2
1,s

) (∑t+w−1
s=t y2

2,s

) . (2.6)

We consider the sliding-window correlation based only past values as a more suitable estimate of
the conditional correlation as

ρt =

∑t−1
s=t−w+1 y1,sy2,s√(∑t−1

s=t−w+1 y2
1,s

) (∑t−1
s=t−w+1 y2

2,s

) . (2.7)

The sliding-window technique allows for a simple approach for exploring changes in connectivity.
However, it has some obvious shortcomings. First, it gives equal weight to all observations less



90 Jaehee Kim

than w time points in the past and 0 importance to all others. Highly influential outlying data points
will cause a sudden change in the dynamic correlation and may be mistakenly a critical aspect of
brain connectivity. To circumvent this problem, Allen et al. (2014) suggested using a tapered sliding
window.

2.2. EWMA approach

The EWMA (exponentially weighted moving average) (Hunter, 1986) approach applies declining
weights to the past observations and the most weight on recent observations in the time series based
on a parameter λ as follows:

Σt = (1 − λ)et−1e′t−1 + λΣt−1, (2.8)

where Σt is the conditional covariance matrix.
Decomposing the covariance matrix (2.8), the conditional variances and covariances are expressed

in the component as follows:

σ2
i,t = (1 − λ)e2

i,t−1 + λσ2
t−1, i = 1, 2, (2.9)

and

σ12,t = (1 − λ)e1,t−1e2,t−1 + λσ12,t−1. (2.10)

With recursive computaion, a small value of λ gives high weight to the recent time-points, while
a large value produces the estimates more gradually to new information. The parameter λ takes
values between 0 and 1, This value determines how many data points are included in the correlation
calculation and serves equivalently to the window size used in the sliding-window approach.

If one assumes that yt are bivariate normal, the optimal λ can be chosen through maximum likeli-
hood estimation as :

log L(λ) ∝ −
1
2

T∑
t=1

|Σt | −
1
2

e′tΣtet. (2.11)

2.3. DCC method

Lindquist et al. (2014) introduced DCC (dynamic conditional correlation) as an approach to estimat-
ing the conditional variances and correlations that has become increasingly popular in the finance
literature. DCC incorporates the GARCH process (Bollerslev, 1986; Engle, 1982) used to model
volatility in univariate time series, providing conditional variance in the following. Let yt = et again
then with GARCH expression we have

σ2
i,t = ωi + αiy2

i,t−1 + βiσ
2
i,t−1, i = 1, 2. (2.12)

Define

ε t = D−1
t et,

where Dt = diag{σ1,t, σ2,t}. Let

Qt = (1 − θ1 − θ2)Q̄ + θ1ε t−1ε
′
t−1 + θ2Qt−1, (2.13)
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Table 1: Mean and SD of MSE’s as performance of pairwise correlation methods with T = 300 in 1,000 repetit
ions

Case statistics Sl EWMA DCC DCCw(AR linw) VAR VARw Dc(AR diff) LMc

1
mean 0.0366 0.0342 0.0115 0.0386 0.0079 0.0393 0.0079 0.0427
mdian 0.0346 0.0321 0.0101 0.0357 0.0049 0.0368 0.0050 0.0397

SD 0.0155 0.0148 0.0045 0.0160 0.0084 0.0163 0.0084 0.0171

2
mean 0.0327 0.0310 0.0133 0.0350 0.0185 0.0350 0.0189 0.0379
mdian 0.0305 0.0284 0.0114 0.0327 0.0129 0.0326 0.0135 0.0349

SD 0.0145 0.0144 0.0065 0.0149 0.0181 0.0147 0.0181 0.0161

3
mean 0.0365 0.0346 0.0140 0.0388 0.0073 0.0399 0.0073 0.0426
mdian 0.0357 0.0335 0.0119 0.0382 0.0051 0.0390 0.0054 0.0419

SD 0.0142 0.0136 0.0062 0.0146 0.0066 0.0150 0.0065 0.0156

4
mean 0.0353 0.0334 0.0146 0.0374 0.0087 0.0380 0.0086 0.0413

median 0.0332 0.0317 0.0127 0.0355 0.0053 0.0362 0.0051 0.0392
SD 0.0147 0.0143 0.0058 0.0149 0.0104 0.0155 0.0102 0.0158

5 mean 0.0377 0.0356 0.0196 0.0400 0.0164 0.0404 00.0167 0.0435
one abrupt median 0.0344 0.0325 0.0181 0.0365 0.0124 0.037 0.0130 0.0404

change SD 0.0153 0.0151 0.0057 0.0163 0.0121 0.0164 0.0123 0.0166

6
mean 0.0349 0.0331 0.0257 0.0371 0.0363 0.0364 0.0371 0.0395

median 0.0327 0.0309 0.0243 0.0348 0.0299 0.0343 0.0311 0.0374
SD 0.0165 0.0161 0.0057 0.0170 0.0219 0.0166 0.022 0.0179

7
mean 0.0411 0.0395 0.0447 0.0441 0.0604 0.0428 0.0614 0.0448

median 0.0372 0.0356 0.0434 0.0419 0.0556 0.0401 0.0565 0.0411
SD 0.0178 0.0175 0.0063 0.0187 0.0247 0.0182 0.0251 0.0187

8
mean 0.0364 0.0344 0.0125 0.0383 0.0106 0.0391 0.0107 0.0424

median 0.0336 0.0316 0.0111 0.0357 0.0064 0.0366 0.0065 0.0390
SD 0.0149 0.0147 0.0052 0.0153 0.0107 0.0156 0.0108 0.0164

9 mean 0.0429 0.0417 0.0323 0.0441 0.0343 0.0439 0.0349 0.0467
two abrupt median 0.0412 0.0406 0.0305 0.0424 0.0308 0.0418 0.0316 0.0454

change SD 0.0159 0.0156 0.0077 0.0160 0.0133 0.0162 0.0136 0.0168

10
mean 0.0359 0.0342 0.0241 0.0376 0.0311 0.0375 0.0319 0.0399

median 0.0325 0.0299 0.0213 0.0343 0.0258 0.0345 0.0270 0.0362
SD 0.0156 0.0154 0.0078 0.0160 0.0186 0.0160 0.0189 0.0163

where Q̄ is the unconditional covariance matrix. Decompose the covariance matrix as

Σt = DtΛtDt, (2.14)

whereΛt = diag{Q}−1/2
t Qtdiag{Q}−1/2

t . Here θ1 and θ2 are non-negative scalars satisfying 0 < θ1+θ2 <
1. The estimation procedure of θ1 and θ2 is in Appendix A in Lindquist et al. (2014).

Wiener (1956) first discussed the causality between the variables in the observed multivariate
time series. Granger (1969) studied Wiener’s idea and introduced a few concepts related to causality,
mainly in the framework of bivariate AR modeling. Recently a similarity between the causality study
in economics and neuroscience has been recognized.

2.4. VAR model

Goebel and Roebroeck (2003), and Roebroeck and Formisano (2005) have proposed the use of VAR
(vector autoregressive model) and shown their utility in the analysis of fMRI experiments.(

y1,t
y2,t

)
=

(
v1
v2

)
+

(
a1,1 a1,2
a2,1 a2,2

) (
y1,t−1
y2,t−1

)
+

(
u1,t
u2,t

)
, (2.15)
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Figure 1: Case 1. Uncorrelated.
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Figure 2: Case 2. Slowly varying periodic change in correlation.

where ut = (u1,t, u2,t)′ is a random error vector with mean zero and covariance matrix Σ given by

Σ =

(
σ2

1t σ12t

σ12t σ2
2t

)
.

This can be expressed with the autoregressive order p as

yt = v + A1yt−1 + A2yt−2 + · · · + Apyt−p + ut, (2.16)

where

Ai =

(
a11i a12i

a21i a22i

)
,

and ut is an error vector of random variables with zero mean and covariance matrix Σ(t) given by

Σ(t) =

(
σ2

1t(t) σ12t(t)
σ12t(t) σ2

2t(t)

)
. (2.17)
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Figure 3: Case 3. Uncorrelated but variances change.
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Figure 4: Case 4. Linear change in correlation.

This Granger causality is shown helpful for inferring functional brain connectivity. However,
VAR modeling is an adequate approach for stationary time series i.e. the autoregressive coefficients
and error matrix covariance are time-invariant.

We let VARw as the VAR method with the sliding window to localize the correlation calculation.
Within the observed data in the window, we apply the VAR method locally.

2.5. Difference AR coefficient model

Consider the AR(1) structure for each time series since there usually exists autocorrelation at lag1 at
least,

y1t = φ1y1,t−1 + β1t + ε1t, (2.18)
y2t = φ2y2,t−1 + β2t + ε2t.
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Figure 5: Case 5. One abrupt change-point in correlation.
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Figure 6: Case 6. One abrupt change-point linear correlation.

Estimate each AR coefficient as φ̂1 and φ̂2 and then compute the followings

ε̂1t = y1t − φ̂1y1,t−1 − β̂1t,

ε̂2t = y2t − φ̂2y2,t−1 − β̂2t.

After the autoregressive and linear trend is removed, the pairwise correlation with the window w
is calculated such as

ρDc,t =

∑t+w−1
s=t ε̂1,sε̂2,s√(∑t+w−1

s=t ε̂2
1,s

) (∑t+w−1
s=t ε̂2

2,s

) . (2.19)

We also try the conditional correlation method with the sliding window as denoted DCCw to local-
ize the correlation calculation. AR (autogressive) of order 1 and temporal linear trends are estimated
for each observed series in the window and then their residuals are used in the pairwise correlation
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Figure 7: Case 7. One abrupt change-point with covariance.
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Figure 8: Case 8. One abrupt change-point in linear correlation.

calculation. This allows observed points to enter and exit from the window as it moves across time
removing the linear trend.

2.6. Linear moving model with recursive residuals

Starting with Brown et al. (1975), residuals became one of the most important tools in change-point
analysis for testing the constancy of regression relationship. The recursive (rec) residual for l = 1, 2
is defined for each time series such as

wl,t =
yl,t − x′t β̂t−1√

1 + x′t
(
X′t−1Xt−1

)−1
xt

, t = w + 1, . . . ,T, (2.20)

where X′t−1 = [x1, . . . , xt−1], Y′l,t−1 = [y1,1, . . . , yl,t−1] and β̂t−1 = (X′t−1Xt−1)−1X′t−1Yt−1 is the ordinary
least-squares estimator. Here xi = ti is the same time-points for each times series. Assuming that
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Figure 9: Case 9. Two abrupt change-points in correlation.
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Figure 10: Case 10. Two abrupt change-points in varying periodic correlation.

εi’s follow the normal distribution, Brown et al. (1975) showed that under H0, wl,k+1, . . . ,wl,T are
independent N(0, σ2).

These recursive residuals are used for correlation calculation as

ρLMc,t =

∑t+w−1
s=t w1,sw2,s√(∑t+w−1

s=t w2
1,s

) (∑t+w−1
s=t w2

2,s

) . (2.21)

Since the recursive residuals are obtained with removing the linear trend, the correlation with these
recursive residuals may not be mixed with the linear trend.

3. Simulations

In this section, we set up the problem situations for pairwise correlation and compare several of its
estimation methods for dynamic connectivity. The two time courses are designed to be generated
from the bivariate normal distributions. In each case, the covariance matrix of the distribution was
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set as a possible structure. The following cases help us understand the different underlying change
patterns. We choose T = 300 for the total time-points. The simulated data are mean corrected for
calculation. For change cases, we set up one change-point at T1 = T/2, For two change cases, we
consider change-points at T1 = T/3 and T2 = (2/3)T .(

2 p(t)
p(t) 3

)
, (3.1)

where the covariance term p(t) are allowed to vary across time for t = 1, . . . ,T , which are allowed to
control the dynamic relationship between the two time courses y1,t and y2,t. The number of time-points
T = 300 is considered in the simulation. The following simulation setup is considered.

(i) Case 1. Uncorrelated and no change in correlations

p(t) = 0, t = 1, . . . ,T.

(ii) Case 2. Slowly varying smooth change in correlation.

p(t) = 0.5 sin(t/∆), t = 1, . . . ,T, ∆ = 1024/2k, k = 3 (chosen).

(iii) Case 3. Uncorrelated but variances change.

Σt =


Σ1 =

(
1 0
0 2

)
, 1 ≤ t ≤ T1 = T/2,

Σ2 =

(
2 0
0 3

)
, T1 < t ≤ T.

(3.2)

(iv) Case 4. p(t) is linear according to time.

p(t) = bt, 1 ≤ t ≤ T, b = 0.3. (3.3)

(v) Case 5. p(t) has one abrupt change-point in correlation (Case 1 + one change-point at T1).

p(t) =

 0, 1 ≤ t ≤ T1,

0.4, T1 < t ≤ T.
(3.4)

(vi) Case 6. p(t) is linear according to time with one change-point (Case 2 + one change-point).

p(t) =

 bt, 1 ≤ t ≤ T1 = T/2,

a + bt, T1 < t ≤ T,
(3.5)

where a = 1/∆, ∆ = 500.

(vii) Case 7. One change-point in correlation with variance change (Case 3 + one change-point).

p(t) =

 0, 1 ≤ t ≤ T1,

0.4, T1 < t ≤ T,
(3.6)
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and

Σt =


Σ1 =

(
1 0
0 2

)
, 1 ≤ t ≤ T1,

Σ2 =

(
2 0
0 3

)
, T1 < t ≤ T.

(3.7)

(viii) Case 8. p(t) is linear according to time (Case 4 + one change-point).

p(t) =

 bt, 1 ≤ t ≤ T1,

a + bt, T1 < t ≤ T,
(3.8)

where a = 0.1, b = 0.2.

(ix) Case 9. Two change-points (Case 1 + two change-points at T1 and T2).

p(t) =


0, 1 ≤ t ≤ T1,

0.3, T1 < t ≤ T2,

0, T2 < t ≤ T.

(3.9)

(x) Case 10. Two change-points in periodic correlation (Case 2 + two change-points).

p(t) =


0.1 + 0.3 sin(t/∆), 1 ≤ t ≤ T1,

sin(t/∆), T1 < t ≤ T2,

0.1 + 0.3 sin(t/∆), T2 < t ≤ T

(3.10)

with ∆ = 1024/2k, k = 3 (in the simulation).

The following abbreviation for methods are used in the comparison results:

• Sl : slide window estimation with the bandwidth h = 0.1 that is, w = 30.

• EWMA : exponentially weighted moving average.

• DCC : dynamic conditional correlation.

• DCCw : driving conditional correlation based on AR(1) and linear trend removed in the window w.

• VAR : vector autoregressive model.

• VARw : vector autoregressive model with the moving window w.

• Dc : autoregrssive difference corrected model, advantage with AR(1) model.

• LMc : correlation with linear moving recursive residuals.

The mean square error (MSE) is computed by calculating the mean of the squared difference
between the estimated correlation and the true correlation at time-points. Table 1 provides the mean,
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Figure 11: Brain ROIs for MDD (Chen et al., 2016).
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Figure 12: fMRI data from MDD patient (left) and heatly control one (right).

median, and SD (standard deviation) of MSE of the corresponding method in each case. We get the
results using Sl, EWMA, DCC, DCCw, VAR, VARw, Dc, and LMc models in 1,000 repetitions with
T = 300. We use the window size w = 30 as fixed for sliding window and moving average methods.
For EWMA λ = 0.3 is chosen to give more weight to the recent terms. There is some potential to
slightly improve the performance based on the optimal widow size. In each case, two figures show
the time-varying correlation estimates according to time with the boxplot of MSE’s. The left panel
of Figures shows an example of the true correlation plotted together with the estimated correlations
obtained by the considered methods for a single simulation repetition. The smallest MSE means are
highlighted in each case in Table 1. The best method varies according to case situation. The right
panel shows boxplots of the MSEs for all 1,000 repetitions in the simulation. In Figures 1–4 VAR and
Dc have smaller mean of MSEs compared to others. VARw and DCCw show similar behavior since
they both use AR coefficients. DCC works better with smooth correlation changes in Figure 2. In
Figures 5–8 for one abrupt change-point in correlation function, the best performance of the methods
depends on the underlying change pattern. When there are two abrupt change-points in Figures 9–10,
DCC, VAR, and Dc show similar performance. Since it incorporates multivariate relations, DCC and
VAR show good performance generally. The sliding window methods depend on the window size that
accounts for the underlying dynamic correlation patterns. We can choose the optimal window size to
minimize some criteria. However, there is an inherent difficulty in determining an appropriate window
length in a real-world situation. In our simulation, the performance of Dc would improve upon DCC
and VAR for the autoregressive situation. Even though DCC is proposed and preferred by Lindquist
et al. (2014), the estimation should be improved when there are change-points in correlations. We
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Figure 13: Example of Correlations between ROI1 and ROI2 from MDD patient (left )and heatly control (right).
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Figure 14: Example of Correlations between ROI1 and ROI3 from MDD patient (left) and heatly control (right).

should consider change-point analysis previously beforehand.
Our simulations show that the performance of each method varies according to the underlying

functional form. Removing the underlying trend and considering multivariate relatedness, then es-
timating the bivariate correlation is a principle. We expect that there is a way to circumvent these
problems. The model’s complexity and data variability affect the decision of the correlation estima-
tion method. As a result, we suggest the practical estimation of dynamic changes and correlations.
In contrast to commonly used sliding windows techniques, DCC and VAR methods are captivating
options.

4. Real fMRI data applicaion

We consider resting-state fMRI data from 20 patients with major depressive disorder (MDD) partic-
ipating in a depression treatment biomarker study. Mayberg et al. (1999) proposed that the bidirec-
tional nature of this limbic-cortical reciprocity provides additional evidence of potential mechanisms
mediating cognitive, pharmacological, and surgical treatments of mood disorders such as depression.
Kemmer et al. (2017) estimated the FC networks from 20 healthy subjects and 20 patients with major
depressive disorder (MDD). The MDD patients were matched with the healthy control subjects by
age and gender, with an average age of 45.8 years and 50% male. The mean Hamilton depression
rating scale (HAM-D) score was 19 (SD : 3.4) for the MDD subjects. This score value indicates
severe depression (Hamilton, 1960). The average length of their current depression episode was 82
weeks. Functional images were collected over 150 time-points on 14 ROIs. For each subject, 150
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Figure 15: Correlations between ROI1 and other ROIs from MDD001 patient.

fMRI volumes were obtained in 7.5 minutes during a resting-state, in which subjects are left to think
for themselves while visually focusing on a cross displayed on a monitor in the scanner. The following
data preprocessing steps are acquired, including motion correction to offset subject movement in the
scanner, slice timing correction to adjust for the fact that each 3D scan represents a single time point
as a series of 2D slices over time, normalization to adopt a common reference space across subjects
and spatial smoothing. They focus on the interactions between some of those reported ROIs (based
on the Brodmann atlas) in the prefrontal cortex (PFC) including medial frontal cortex (mF10), orbital
frontal cortex (OF11), and lateral prefrontal cortex (latF9); subgenual cingulate cortex (Cg25) and
anterior cingulate (Cg24) shown in Figure 11.

For each subject, we have
(

14
2

)
= 91 pairwise correlations. For example, we apply the correlation

methods for fMRI data with MDD patients. There has been a growing interest in estimating potential
dynamic correlations between two brain ROIs, as it is thought to provide important information about
the properties of brain networks. Figure 12 shows the fMRI data on 14 ROIs for one MDD patient
(MDD001) and one healthy control (CON021). For the pairwise correlations considered in this paper,
we have Figure 14 which shows difference according to the method and some different patterns due
to groups. Figures 15 and 16 show the bivariate correlations between ROI1 and other ROIs by the
considered methods. In this application with the window size w = 30 out of T = 150. These
examplary figures give a hint that the dynamic correlations should be carefully dealt in fMRI analysis.
We observed a fair amount of variability in the behavior of these correlations across time, regions and
subject.
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Figure 16: Correlations between ROI1 and other ROIs from CON021 heatly control subject.

5. Discussion

This study presents a preliminary analysis of dynamic correlations between two brain regions, pro-
viding vital information about the properties of brain networks. We use several pairwise correlation
measures to analyze time-varying interactions between brain regions. This work illustrates that we
should consider change situations for correlation computation. Commonly used sliding-window tech-
niques may not be beneficial for tracking dynamic correlations.

DCC and VAR models are extensively used in the finance literature for modeling time-varying
variances and correlations and are generally considered preferable to sliding-window type approaches
(Bauwens et al., 2006). Both have adaptability even though there are change-points. While the
sliding window estimator is non-parametric, the DCC and EWMA models are parametric. These
parametric approaches are powerful if the model is reasonably accurate. Moving estimators, including
differences, can also be considered to avoid parameter estimation in the model. The more flexible non-
parametric methods have advantages when the underlying function is changeable.

The wealth of information provided by time-frequency connectivity analysis presents additional
challenges for studying multiple subjects and spatial locations. One way of handling this information
is to summarize the dynamic information along several potentially-relevant dimensions.

Modeling time-varying variances and correlations is preferable to sliding-window type approaches.
When considering the N−variate case, a total of N(N + 1)/2 variances and covariances need to be es-
timated, some of which may be time-varying. In addition, the resulting covariance matrix must be
positive definite at each time-point. When there are underlying changes, consider the estimation of
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change-points (Kim et al., 2021), for example. Finally, the practical estimation of dynamic correla-
tions depends on accurately analyzing the underlying change function.
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