DOI QR코드

DOI QR Code

In vitro evaluation of the antitumor activity of axitinib in canine mammary gland tumor cell lines

  • Hye-Gyu Lee (Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University) ;
  • Ga-Hyun Lim (Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University) ;
  • Ju-Hyun An (Department of Veterinary Emergency and Critical Care Medicine and Institute of Veterinary Science, College of Veterinary Medicine, Kangwon National University) ;
  • Su-Min Park (Haemaru Referral Animal Hospital) ;
  • Kyoung-Won Seo (Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University) ;
  • Hwa-Young Youn (Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University)
  • Received : 2023.07.23
  • Accepted : 2023.11.09
  • Published : 2024.01.31

Abstract

Background: Axitinib, a potent and selective inhibitor of vascular endothelial growth factor (VEGF) receptor (VEGFR) tyrosine kinase 1,2 and 3, is used in chemotherapy because it inhibits tumor angiogenesis by blocking the VEGF/VEGFR pathway. In veterinary medicine, attempts have been made to apply tyrosine kinase inhibitors with anti-angiogenic effects to tumor patients, but there are no studies on axitinib in canine mammary gland tumors (MGTs). Objectives: This study aimed to confirm the antitumor activity of axitinib in canine mammary gland cell lines. Methods: We treated canine MGT cell lines (CIPp and CIPm) with axitinib and conducted CCK, wound healing, apoptosis, and cell cycle assays. Additionally, we evaluated the expression levels of angiogenesis-associated factors, including VEGFs, PDGF-A, FGF-2, and TGF-β1, using quantitative real-time polymerase chain reaction. Furthermore, we collected canine peripheral blood mononuclear cells (PBMCs), activated them with concanavalin A (ConA) and lipopolysaccharide (LPS), and then treated them with axitinib to investigate changes in viability. Results: When axitinib was administered to CIPp and CIPm, cell viability significantly decreased at 24, 48, and 72 h (p < 0.001), and migration was markedly reduced (6 h, p < 0.05; 12 h, p < 0.005). The apoptosis rate significantly increased (p < 0.01), and the G2/M phase ratio showed a significant increase (p < 0.001). Additionally, there was no significant change in the viability of canine PBMCs treated with LPS and ConA. Conclusion: In this study, we confirmed the antitumor activity of axitinib against canine MGT cell lines. Accordingly, we suggest that axitinib can be applied as a new treatment for patients with canine MGTs.

Keywords

Acknowledgement

We thank the Seoul National University FACS Facility (NCIRF) for untiring efforts and perseverance.

References

  1. Sorenmo KU, Worley DR, Zappulli V. 28. Tumors of the mammary gland. In: Vail DM, Thamm DH, Liptak JM, editors. Withrow and MacEwen's Small Animal Clinical Oncology. 6th ed. St. Louis: W.B. Saunders; 2019, 604-625.
  2. Merlo DF, Rossi L, Pellegrino C, Ceppi M, Cardellino U, Capurro C, et al. Cancer incidence in pet dogs: findings of the Animal Tumor Registry of Genoa, Italy. J Vet Intern Med. 2008;22(4):976-984. https://doi.org/10.1111/j.1939-1676.2008.0133.x
  3. Chang SC, Chang CC, Chang TJ, Wong ML. Prognostic factors associated with survival two years after surgery in dogs with malignant mammary tumors: 79 cases (1998-2002). J Am Vet Med Assoc. 2005;227(10):1625-1629. https://doi.org/10.2460/javma.2005.227.1625
  4. Stratmann N, Failing K, Richter A, Wehrend A. Mammary tumor recurrence in bitches after regional mastectomy. Vet Surg. 2008;37(1):82-86. https://doi.org/10.1111/j.1532-950X.2007.00351.x
  5. Kurzman ID, Gilbertson SR. Prognostic factors in canine mammary tumors. Semin Vet Med Surg (Small Anim). 1986;1(1):25-32. PUBMED
  6. Yamagami T, Kobayashi T, Takahashi K, Sugiyama M. Prognosis for canine malignant mammary tumors based on TNM and histologic classification. J Vet Med Sci. 1996;58(11):1079-1083. https://doi.org/10.1292/jvms.58.11_1079
  7. Sorenmo K. Canine mammary gland tumors. Vet Clin North Am Small Anim Pract. 2003;33(3):573-596. https://doi.org/10.1016/S0195-5616(03)00020-2
  8. Ma J, Waxman DJ. Combination of antiangiogenesis with chemotherapy for more effective cancer treatment. Mol Cancer Ther. 2008;7(12):3670-3684. https://doi.org/10.1158/1535-7163.MCT-08-0715
  9. Lopes-Coelho F, Martins F, Pereira SA, Serpa J. Anti-angiogenic therapy: current challenges and future perspectives. Int J Mol Sci. 2021;22(7):3765.
  10. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997;18(1):4-25. https://doi.org/10.1210/edrv.18.1.0287
  11. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature. 2000;407(6801):242-248. https://doi.org/10.1038/35025215
  12. Marme D. The impact of anti-angiogenic agents on cancer therapy. J Cancer Res Clin Oncol. 2003;129(11):607-620. https://doi.org/10.1007/s00432-003-0488-9
  13. Gasparini G, Longo R, Fanelli M, Teicher BA. Combination of antiangiogenic therapy with other anticancer therapies: results, challenges, and open questions. J Clin Oncol. 2005;23(6):1295-1311. https://doi.org/10.1200/JCO.2005.10.022
  14. Koutras A, Kotoula V, Fountzilas G. Prognostic and predictive role of vascular endothelial growth factor polymorphisms in breast cancer. Pharmacogenomics. 2015;16(1):79-94. https://doi.org/10.2217/pgs.14.148
  15. Adams J, Carder PJ, Downey S, Forbes MA, MacLennan K, Allgar V, et al. Vascular endothelial growth factor (VEGF) in breast cancer: comparison of plasma, serum, and tissue VEGF and microvessel density and effects of tamoxifen. Cancer Res. 2000;60(11):2898-2905. PUBMED
  16. Zhang M, Liu J, Liu G, Xing Z, Jia Z, Li J, et al. Anti-vascular endothelial growth factor therapy in breast cancer: molecular pathway, potential targets, and current treatment strategies. Cancer Lett. 2021;520(1):422-433. https://doi.org/10.1016/j.canlet.2021.08.005
  17. Jain RK, Duda DG, Clark JW, Loeffler JS. Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol. 2006;3(1):24-40. https://doi.org/10.1038/ncponc0403
  18. Qiu CW, Lin DG, Wang JQ, Li CY, Deng GZ. Expression and significance of PTEN and VEGF in canine mammary gland tumours. Vet Res Commun. 2008;32(6):463-472. https://doi.org/10.1007/s11259-008-9049-7
  19. Kelly RJ, Rixe O. Axitinib (AG-013736). Recent Results Cancer Res. 2010;184(1):33-44. https://doi.org/10.1007/978-3-642-01222-8_3
  20. Wilmes LJ, Pallavicini MG, Fleming LM, Gibbs J, Wang D, Li KL, et al. AG-013736, a novel inhibitor of VEGF receptor tyrosine kinases, inhibits breast cancer growth and decreases vascular permeability as detected by dynamic contrast-enhanced magnetic resonance imaging. Magn Reson Imaging. 2007;25(3):319-327. https://doi.org/10.1016/j.mri.2006.09.041
  21. Rugo HS, Herbst RS, Liu G, Park JW, Kies MS, Steinfeldt HM, et al. Phase I trial of the oral antiangiogenesis agent AG-013736 in patients with advanced solid tumors: pharmacokinetic and clinical results. J Clin Oncol. 2005;23(24):5474-5483. https://doi.org/10.1200/JCO.2005.04.192
  22. Uyama R, Nakagawa T, Hong SH, Mochizuki M, Nishimura R, Sasaki N. Establishment of four pairs of canine mammary tumour cell lines derived from primary and metastatic origin and their E-cadherin expression. Vet Comp Oncol. 2006;4(2):104-113. https://doi.org/10.1111/j.1476-5810.2006.00098.x
  23. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3--new capabilities and interfaces. Nucleic Acids Res. 2012;40(15):e115.
  24. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10(1):421.
  25. Paik ES, Kim TH, Cho YJ, Ryu J, Choi JJ, Lee YY, et al. Preclinical assessment of the VEGFR inhibitor axitinib as a therapeutic agent for epithelial ovarian cancer. Sci Rep. 2020;10(1):4904.
  26. Hu-Lowe DD, Zou HY, Grazzini ML, Hallin ME, Wickman GR, Amundson K, et al. Nonclinical antiangiogenesis and antitumor activities of axitinib (AG-013736), an oral, potent, and selective inhibitor of vascular endothelial growth factor receptor tyrosine kinases 1, 2, 3. Clin Cancer Res. 2008;14(22):7272-7283. https://doi.org/10.1158/1078-0432.CCR-08-0652
  27. Morelli MB, Amantini C, Santoni M, Soriani A, Nabissi M, Cardinali C, et al. Axitinib induces DNA damage response leading to senescence, mitotic catastrophe, and increased NK cell recognition in human renal carcinoma cells. Oncotarget. 2015;6(34):36245-36259. https://doi.org/10.18632/oncotarget.5768
  28. He Q, Gao J, Ge S, Wang T, Li Y, Peng Z, et al. Axitinib alone or in combination with chemotherapeutic drugs exerts potent antitumor activity against human gastric cancer cells in vitro and in vivo. J Cancer Res Clin Oncol. 2014;140(9):1575-1583. https://doi.org/10.1007/s00432-014-1693-4
  29. Yang K, Hitomi M, Stacey DW. Variations in cyclin D1 levels through the cell cycle determine the proliferative fate of a cell. Cell Div. 2006;1(1):32.
  30. Habiba YH, Omran GA, Helmy MW, Houssen ME. Antitumor effects of rhamnazinon sorafenib-treated human hepatocellular carcinoma cell lines via modulation of VEGF signaling and PI3K/NF-κB p38/caspase-3 axes cross talk. Life Sci. 2022;297(1):120443.
  31. Jiang X, Wang J, Deng X, Xiong F, Zhang S, Gong Z, et al. The role of microenvironment in tumor angiogenesis. J Exp Clin Cancer Res. 2020;39(1):204.
  32. Hui Q, Jin Z, Li X, Liu C, Wang X. FGF family: from drug development to clinical application. Int J Mol Sci. 2018;19(7):1875.
  33. Tripurani SK, Cook RW, Eldin KW, Pangas SA. BMP-specific SMADs function as novel repressors of PDGFA and modulate its expression in ovarian granulosa cells and tumors. Oncogene. 2013;32(33):3877-3885. https://doi.org/10.1038/onc.2012.392
  34. Chen CY, Wu SM, Lin YH, Chi HC, Lin SL, Yeh CT, et al. Induction of nuclear protein-1 by thyroid hormone enhances platelet-derived growth factor A mediated angiogenesis in liver cancer. Theranostics. 2019;9(8):2361-2379. https://doi.org/10.7150/thno.29628
  35. Baba AB, Rah B, Bhat GR, Mushtaq I, Parveen S, Hassan R, et al. Transforming growth factor-beta (TGF-β) signaling in cancer-a betrayal within. Front Pharmacol. 2022;13(1):791272.
  36. Pardali E, ten Dijke P. Transforming growth factor-beta signaling and tumor angiogenesis. Front Biosci (Landmark Ed). 2009;14(13):4848-4861. https://doi.org/10.2741/3573
  37. Bhattacharya R, Fan F, Wang R, Ye X, Xia L, Boulbes D, et al. Intracrine VEGF signalling mediates colorectal cancer cell migration and invasion. Br J Cancer. 2017;117(6):848-855. https://doi.org/10.1038/bjc.2017.238
  38. Fan F, Wey JS, McCarty MF, Belcheva A, Liu W, Bauer TW, et al. Expression and function of vascular endothelial growth factor receptor-1 on human colorectal cancer cells. Oncogene. 2005;24(16):2647-2653. https://doi.org/10.1038/sj.onc.1208246
  39. Zhang L, Wang JN, Tang JM, Kong X, Yang JY, Zheng F, et al. VEGF is essential for the growth and migration of human hepatocellular carcinoma cells. Mol Biol Rep. 2012;39(5):5085-5093. https://doi.org/10.1007/s11033-011-1304-2
  40. Price DJ, Miralem T, Jiang S, Steinberg R, Avraham H. Role of vascular endothelial growth factor in the stimulation of cellular invasion and signaling of breast cancer cells. Cell Growth Differ. 2001;12(3):129-135.
  41. Perrot-Applanat M, Di Benedetto M. Autocrine functions of VEGF in breast tumor cells: adhesion, survival, migration and invasion. Cell Adhes Migr. 2012;6(6):547-553. https://doi.org/10.4161/cam.23332
  42. Jiang H, Liao J, Wang L, Jin C, Mo J, Xiang S. The multikinase inhibitor axitinib in the treatment of advanced hepatocellular carcinoma: the current clinical applications and the molecular mechanisms. Front Immunol. 2023;14(1):1163967.
  43. Escudier B, Gore M. Axitinib for the management of metastatic renal cell carcinoma. Drugs R D. 2011;11(2):113-126. https://doi.org/10.2165/11591240-000000000-00000
  44. Mittal K, Wood LS, Rini BI. Axitinib in metastatic renal cell carcinoma. Biol Ther. 2012;2(1):5.
  45. Stehle F, Schulz K, Fahldieck C, Kalich J, Lichtenfels R, Riemann D, et al. Reduced immunosuppressive properties of axitinib in comparison with other tyrosine kinase inhibitors. J Biol Chem. 2013;288(23):16334-16347. https://doi.org/10.1074/jbc.M112.437962