DOI QR코드

DOI QR Code

Functional Analysis of Genes Specifically Expressed during Aerial Hyphae Collapse as a Potential Signal for Perithecium Formation Induction in Fusarium graminearum

  • Yun-Seon Choi (Department of Medical Biotechnology, Soonchunhyang University) ;
  • Da-Woon Kim (Department of Medical Biotechnology, Soonchunhyang University) ;
  • Sung-Hwan Yun (Department of Medical Biotechnology, Soonchunhyang University)
  • Received : 2024.01.13
  • Accepted : 2024.01.19
  • Published : 2024.02.01

Abstract

Fusarium graminearum, the causal agent of Fusarium head blight (FHB) in cereal crops, employs the production of sexual fruiting bodies (perithecia) on plant debris as a strategy for overwintering and dissemination. In an artificial condition (e.g., carrot agar medium), the F. graminearum Z3643 strain was capable of producing perithecia predominantly in the central region of the fungal culture where aerial hyphae naturally collapsed. To unravel the intricate relationship between natural aerial hyphae collapse and sexual development in this fungus, we focused on 699 genes differentially expressed during aerial hyphae collapse, with 26 selected for further analysis. Targeted gene deletion and quantitative real-time PCR analyses elucidated the functions of specific genes during natural aerial hyphae collapse and perithecium formation. Furthermore, comparative gene expression analyses between natural collapse and artificial removal conditions reveal distinct temporal profiles, with the latter inducing a more rapid and pronounced response, particularly in MAT gene expression. Notably, FGSG_09210 and FGSG_09896 play crucial roles in sexual development and aerial hyphae growth, respectively. Taken together, it is plausible that if aerial hyphae collapse occurs on plant debris, it may serve as a physical cue for inducing perithecium formation in crop fields, representing a survival strategy for F. graminearum during winter. Insights into the molecular mechanisms underlying aerial hyphae collapse provides offer potential strategies for disease control against FHB caused by F. graminearum.

Keywords

Acknowledgement

This study was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and Information, Communication & Technology (NRF-2017R1A2B4011541), and also supported by the Soonchunhyang University Research Fund.

References

  1. Baek, S. G., Kim, S., Jang, J. Y., Kim, J. and Lee, T. 2020. Ferulic acid content of barley and wheat grains and head blight resistance. Res. Plant Dis. 26:250-255. https://doi.org/10.5423/RPD.2020.26.4.250
  2. Balmant, W., Sugai-Guerios, M. H., Coradin, J. H., Krieger, N., Furigo Junior, A. and Mitchell, D. A. 2015. A model for growth of a single fungal hypha based on well-mixed tanks in series: simulation of nutrient and vesicle transport in aerial reproductive hyphae. PLoS ONE 10:e0120307.
  3. Bennett, J. W. and Klich, M. 2003. Mycotoxins. Clin. Microbiol. Res. 16:497-516. https://doi.org/10.1128/CMR.16.3.497-516.2003
  4. Boedi, S., Berger, H., Sieber, C., Munsterkotter, M., Maloku, I., Warth, B., Sulyok, M., Lemmns, M., Schumacher, R., Guldner, U. and Strauss, J. 2016. Comparison of Fusarium graminearum transcriptomes on living or dead wheat differentiates substrate-responsive and defense-responsive genes. Front Microbiol. 7:1113.
  5. Catlett, N. L., Lee, B.-N., Yoder, O. C. and Turgeon, B. G. 2003. Split-marker recombination for efficient targeted deletion of fungal genes. Fungal Genet. Newsl. 50:9-11. https://doi.org/10.4148/1941-4765.1150
  6. Chung, H. S. 1975. Cereal scab causing mycotoxicoses in Korea and present status of mycotoxin researches. Korean J. Mycol. 3:31-36.
  7. Fernando, U., Chatur, S., Joshi, M., Bonner, C. T., Fan, T., Hubbard, K., Chabot, D., Rowland, O., Wang, L., Subramaniam, R. and Rampitsch, C. 2019. Redox signalling from NADPH oxidase targets metabolic enzymes and developmental proteins in Fusarium graminearum. Mol. Plant Pathol. 20:92-106. https://doi.org/10.1111/mpp.12742
  8. Goswami, R. S. and Kistler, H. C. 2004. Heading for disaster: Fusarium graminearum on cereal crops. Mol. Plant Pathol. 5:515-525. https://doi.org/10.1111/j.1364-3703.2004.00252.x
  9. Hao, G., McCormick, S., Usgaard, T., Tiley, H. and Vaughan, M. M. 2020. Characterization of three Fusarium graminearum effectors and their roles during Fusarium head blight. Front. Plant Sci. 11:579553.
  10. Hein, I. 1928. Studies on morphogenesis in fungus mycelia. Bull. Torrey Bot. Club 55:513-528. https://doi.org/10.2307/2480766
  11. Jang, J. Y., Baek, S. G., Choi, J.-H., Kim, S., Kim, J., Kim, D.-W., Yun, S.-H. and Lee, T. 2019. Characterization of nivalenol-producing Fusarium asiaticum that causes cereal head blight in Korea. Plant Pathol. J. 35:543-552. https://doi.org/10.5423/PPJ.OA.06.2019.0168
  12. Khudhair, M., Kazan, K., Thatcher, L. F., Obanor, F., Rusu, A., Sorensen, J. L., Wollenberg, R. D., McKay, A., Giblot-Ducray, D., Simpfendorfer, S., Aitken, E. and Gardiner, D. M. 2020. Fusaristatin A production negatively affects the growth and aggressiveness of the wheat pathogen Fusarium pseudograminearum. Fungal Genet. Biol. 136:103314. https://doi.org/10.1016/j.fgb.2019.103314
  13. Kim, H.-K., Cho, E. J., Lee, S., Lee, Y.-S. and Yun, S.-H. 2012. Functional analyses of individual mating-type transcripts at MAT loci in Fusarium graminearum and Fusarium asiaticum. FEMS Microbiol. Lett. 337:89-96. https://doi.org/10.1111/1574-6968.12012
  14. Kim, H.-K., Jo, S.-M., Kim, G.-Y., Kim, D.-W., Kim, Y.-K. and Yun, S.-H. 2015. A large-scale functional analysis of putative target genes of mating-type loci provides insight into the regulation of sexual development of the cereal pathogen Fusarium graminearum. PLoS Genet. 11:e1005486.
  15. Kim, H.-K., Lee, T. and Yun, S.-H. 2008. A putative pheromone signaling pathway is dispensable for self-fertility in the homothallic ascomycete Gibberella zeae. Fungal Genet. Biol. 45:1188-1196. https://doi.org/10.1016/j.fgb.2008.05.008
  16. Kim, J.-I., Ha, A., Park, A. R. and Kim, J.-C. 2017. Isolation and characterization of antifungal metabolites from Pterocarpus santalinus against Fusarium graminearum causing Fusarium head blight on wheat. Res. Plant Dis. 23:268-277 (in Korean). https://doi.org/10.5423/RPD.2017.23.3.268
  17. Lee, J., Lee, T., Lee, Y.-W., Yun, S.-H. and Turgeon, B. G. 2003. Shifting fungal reproductive mode by manipulation of mating type genes: obligatory heterothallism of Gibberella zeae. Mol. Microbiol. 50:145-152. https://doi.org/10.1046/j.1365-2958.2003.03694.x
  18. Lee, S.-H., Han, Y.-K., Yun, S.-H. and Lee, Y.-W. 2009. Roles of the glyoxylate and methylcitrate cycles in sexual development and virulence in the cereal pathogen Gibberella zeae. Eukaryot. Cell 8:1155-1164. https://doi.org/10.1128/EC.00335-08
  19. Leslie, J. F. and Summerell, B. A. 2006. The Fusarium laboratory manual. Blackwell, Ames, IA, USA. 388 pp.
  20. McMullen, M., Jones, R. and Gallenberg, D. 1997. Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Dis. 81:1340-1348. https://doi.org/10.1094/PDIS.1997.81.12.1340
  21. Namiki, F., Matsunaga, M., Okuda, M., Nishi, K., Fujita, Y. and Tsuge, T. 2001. Mutation of an arginine biosynthesis gene causes reduced pathogenicity in Fusarium oxysporum f. sp. melonis. Mol. Plant-Microbe Interact. 14:580-584. https://doi.org/10.1094/MPMI.2001.14.4.580
  22. Nganje, W. E., Bangsund, D. A., Leistritz, F. L., Wilson, W. W. and Tiapo, N. M. 2002. Estimating the economic impact of a crop disease: the case of Fusarium head blight in U.S. wheat and barley. In: 2002 National Fusarium Head Blight Forum Proceedings, eds. by S. M. Canty, J. Lewis, L. Siler and R. W. Ward, pp. 275-281.
  23. Shin, Y.-K., Kim, D.-W., Lee, S.-W., Lee, M.-J., Baek, S. G., Lee, T. and Yun, S.-H. 2022. Functional roles of all five putative hydrophobin genes in growth, development, and secondary metabolism in Fusarium graminearum. Fungal Genet. Biol. 160:103683.
  24. Sorensen, J. L., Sondergaard, T. E., Covarelli, L., Fuertes, P. R., Hansen, F. T., Frandsen, R. J. N., Saei, W., Lukassen, M. B., Wimmer, R., Nielsen, K. F., Gardiner, D. M. and Giese, H. 2014. Identification of the biosynthetic gene clusters for the lipopeptides fusaristatin A and W493 B in Fusarium graminearum and F. pseudograminearum. J. Nat. Prod. 77:2619-2625. https://doi.org/10.1021/np500436r
  25. Trail, F., Xu, H., Loranger, R. and Gadoury, D. 2002. Physiological and environmental aspects of ascospore discharge in Gibberella zeae (anamorph Fusarium graminearum). Mycologia 94:181-189. https://doi.org/10.1080/15572536.2003.11833223
  26. Turkington, T. K., Petran, A., Yonow, T. and Kriticos, D. J. 2016. Fusarium graminearum. HarvestChoice Pest Geography. In-STePP-HarvestChoice, St. Paul, MN, USA. 9 pp.