DOI QR코드

DOI QR Code

Transcriptomic Insights into Abies koreana Drought Tolerance Conferred by Aureobasidium pullulans AK10

  • Jungwook Park (Department of Integrated Biological Science, Pusan National University) ;
  • Mohamed Mannaa (Department of Integrated Biological Science, Pusan National University) ;
  • Gil Han (Department of Integrated Biological Science, Pusan National University) ;
  • Hyejung Jung (Department of Integrated Biological Science, Pusan National University) ;
  • Hyo Seong Jeon (Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University) ;
  • Jin-Cheol Kim (Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University) ;
  • Ae Ran Park (Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University) ;
  • Young-Su Seo (Department of Integrated Biological Science, Pusan National University)
  • 투고 : 2023.11.22
  • 심사 : 2023.12.03
  • 발행 : 2024.02.01

초록

The conservation of the endangered Korean fir, Abies koreana, is of critical ecological importance. In our previous study, a yeast-like fungus identified as Aureobasidium pullulans AK10, was isolated and shown to enhance drought tolerance in A. koreana seedlings. In this study, the effectiveness of Au. pullulans AK10 treatment in enhancing drought tolerance in A. koreana was confirmed. Furthermore, using transcriptome analysis, we compared A. koreana seedlings treated with Au. pullulans AK10 to untreated controls under drought conditions to elucidate the molecular responses involved in increased drought tolerance. Our findings revealed a predominance of downregulated genes in the treated seedlings, suggesting a strategic reallocation of resources to enhance stress defense. Further exploration of enriched Kyoto Encyclopedia of Genes and Genomes pathways and protein-protein interaction networks revealed significant alterations in functional systems known to fortify drought tolerance, including the terpenoid backbone biosynthesis, calcium signaling pathway, pyruvate metabolism, brassinosteroid biosynthesis, and, crucially, flavonoid biosynthesis, renowned for enhancing plant drought resistance. These findings deepen our comprehension of how AK10 biostimulation enhances the resilience of A. koreana to drought stress, marking a substantial advancement in the effort to conserve this endangered tree species through environmentally sustainable treatment.

키워드

과제정보

This study was supported by the Research and Development Program for Forest Science Technology (Project No. FTIS 2021334B10-2323-CD02) and was provided by the Korea Forest Service (Korea Forestry Promotion Institute).

참고문헌

  1. Azevedo, H., Lino-Neto, T. and Tavares, R. M. 2003. An improved method for high-quality RNA isolation from needles of adult maritime pine trees. Plant Mol. Biol. Rep. 21:333-338. https://doi.org/10.1007/BF02772582
  2. Baozhu, L., Ruonan, F., Yanting, F., Runan, L., Hui, Z., Tingting, C., Jiong, L., Han, L., Xiang, Z. and Chun-peng, S. 2022. The flavonoid biosynthesis regulator PFG3 confers drought stress tolerance in plants by promoting flavonoid accumulation. Environ. Exp. Bot. 196:104792.
  3. Benjamini, Y. and Hochberg, Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57:289-300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
  4. Chi, Z., Wang, F., Chi, Z., Yue, L., Liu, G. and Zhang, T. 2009. Bioproducts from Aureobasidium pullulans, a biotechnologically important yeast. Appl. Microbiol. Biotechnol. 82:793-804. https://doi.org/10.1007/s00253-009-1882-2
  5. Di Francesco, A., Di Foggia, M., Corbetta, M., Baldo, D., Ratti, C. and Baraldi, E. 2021. Biocontrol activity and plant growth promotion exerted by Aureobasidium pullulans strains. J. Plant Growth Regul. 40:1233-1244. https://doi.org/10.1007/s00344-020-10184-3
  6. Hardie, D. G. 2011. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev. 25:1895-1908. https://doi.org/10.1101/gad.17420111
  7. Kanehisa, M., Sato, Y. and Morishima, K. 2016. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428:726-731. https://doi.org/10.1016/j.jmb.2015.11.006
  8. Kim, D. W., Jeong, D. Y. and Park, H. C. 2020. Identification of molecular markers for population diagnosis of Korean fir (Abies koreana) vulnerable to climate change. Proc. Natl. Inst. Ecol. 1:68-73.
  9. Kim, H. J., Le, Q. K., Lee, M. H., Kim, T. S., Lee, H.-K., Kim, Y. H., Bae, K. and Lee, I.-S. 2001. A cytotoxic secocycloartenoid from Abies koreana. Arch. Pharm. Res. 24:527-531. https://doi.org/10.1007/BF02975159
  10. Kim, J.-K., Koh, J.-G., Yim, H.-T. and Kim, D.-S. 2017. Changes of spatial distribution of Korean fir forest in Mt. Hallasan for the past 10 years (2006, 2015). Korean J. Environ. Ecol. 31:549-556. https://doi.org/10.13047/KJEE.2017.31.6.549
  11. Kim, K., Bu, Y., Jeong, S., Lim, J., Kwon, Y., Cha, D. S., Kim, J., Jeon, S., Eun, J. and Jeon, H. 2006. Memory-enhancing effect of a supercritical carbon dioxide fluid extract of the needles of Abies koreana on scopolamine-induced amnesia in mice. Biosci. Biotechnol. Biochem. 70:1821-1826. https://doi.org/10.1271/bbb.50608
  12. Kim, Y.-S., Chang, C.-S., Kim, C.-S. and Gardner, M. 2011. Abies koreana. The IUCN Red List of Threatened Species 2011:e.T31244A9618913. International Union for Conservation of Nature and Natural Resources, Gland, Switzerland. 11 pp.
  13. Laoue, J., Fernandez, C. and Ormeno, E. 2022. Plant flavonoids in mediterranean species: a focus on flavonols as protective metabolites under climate stress. Plants 11:172.
  14. Li, H. and Durbin, R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754-1760. https://doi.org/10.1093/bioinformatics/btp324
  15. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G. and Durbin, R. 2009. The Sequence Alignment/Map (SAM) format and SAMtools. Bioinformatics 25:2078-2079. https://doi.org/10.1093/bioinformatics/btp352
  16. Liao, Y., Smyth, G. K. and Shi, W. 2014. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923-930. https://doi.org/10.1093/bioinformatics/btt656
  17. Mandlik, A., Livny, J., Robins, W. P., Ritchie, J. M., Mekalanos, J. J. and Waldor, M. K. 2011. RNA-seq-based monitoring of infection-linked changes in Vibrio cholerae gene expression. Cell Host Microbe 10:165-174. https://doi.org/10.1016/j.chom.2011.07.007
  18. Mannaa, M., Han, G., Jung, H., Park, J., Kim, J.-C., Park, A. R. and Seo, Y.-S. 2023. Aureobasidium pullulans treatment mitigates drought stress in Abies koreana via rhizosphere microbiome modulation. Plants 12:3653.
  19. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. and Wold, B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5:621-628. https://doi.org/10.1038/nmeth.1226
  20. Park, J., Jeon, H. W., Jung, H., Lee, H.-H., Kim, J., Park, A. R., Kim, N., Han, G., Kim, J.-C. and Seo, Y.-S. 2020. Comparative transcriptome analysis of pine trees treated with resistance-inducing substances against the nematode Bursaphelenchus xylophilus. Genes 11:1000.
  21. Peleg, Z. and Blumwald, E. 2011. Hormone balance and abiotic stress tolerance in crop plants. Curr. Opin. Plant Biol. 14:290-295. https://doi.org/10.1016/j.pbi.2011.02.001
  22. Qureshi, R. and Sacan, A. 2013. Weighted set enrichment of gene expression data. BMC Syst. Biol. 7(Suppl. 4):S10.
  23. Rodriguez, M. C. S., Petersen, M. and Mundy, J. 2010. Mitogenactivated protein kinase signaling in plants. Annu. Rev. Plant Biol. 61:621-649. https://doi.org/10.1146/annurev-arplant-042809-112252
  24. Shao, H.-B., Song, W.-Y. and Chu, L.-Y. 2008. Advances of calcium signals involved in plant anti-drought. Comptes Rendus Biol. 331:587-596. https://doi.org/10.1016/j.crvi.2008.03.012
  25. Shen, J.-L., Li, C.-L., Wang, M., He, L.-L., Lin, M.-Y., Chen, D.-H. and Zhang, W. 2017. Mitochondrial pyruvate carrier 1 mediates abscisic acid-regulated stomatal closure and the drought response by affecting cellular pyruvate content in Arabidopsis thaliana. BMC Plant Biol. 17:217.
  26. Shukla, N., Yadav, R., Kaur, P., Rasmussen, S., Goel, S., Agarwal, M., Jagannath, A., Gupta, R. and Kumar, A. 2018. Transcriptome analysis of root-knot nematode (Meloidogyne incognita)-infected tomato (Solanum lycopersicum) roots reveals complex gene expression profiles and metabolic networks of both host and nematode during susceptible and resistance responses. Mol. Plant Pathol. 19:615-633. https://doi.org/10.1111/mpp.12547
  27. Smith, A. M., Zeeman, S. C. and Smith, S. M. 2005. Starch degradation. Annu. Rev. Plant Biol. 56:73-98. https://doi.org/10.1146/annurev.arplant.56.032604.144257
  28. Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J. and con Mering, C. 2019. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47:D607-D613. https://doi.org/10.1093/nar/gky1131
  29. Tiedge, K., Li, X., Merrill, A. T., Davisson, D., Chen, Y., Yu, P., Tantillo, D. J., Last, R. L. and Zerbe, P. 2022. Comparative transcriptomics and metabolomics reveal specialized metabolite drought stress responses in switchgrass (Panicum virgatum). New Phytol. 236:1393-1408. https://doi.org/10.1111/nph.18443
  30. Wang, L., Feng, Z., Wang, X., Wang, X. and Zhang, X. 2010. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136-138. https://doi.org/10.1093/bioinformatics/btp612
  31. Watkins, J. M., Chapman, J. M. and Muday, G. K. 2017. Abscisic acid-induced reactive oxygen species are modulated by flavonols to control stomata aperture. Plant Physiol. 175:1807-1825. https://doi.org/10.1104/pp.17.01010
  32. Yang, L.-L., Yang, L., Yang, X., Zhang, T., Lan, Y.-M., Zhao, Y., Han, M. and Yang, L.-M. 2020. Drought stress induces biosynthesis of flavonoids in leaves and saikosaponins in roots of Bupleurum chinense DC. Phytochemistry 177:112434.
  33. Yang, Y. H., Dudoit, S., Luu, P., Lin, D. M., Peng, V., Ngai, J. and Speed, T. P. 2002. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 30:e15.
  34. Ye, H., Liu, S., Tang, B., Chen, J., Xie, Z., Nolan, T. M., Jiang, H., Guo, H., Lin, H.-Y., Li, L., Wang, Y., Tong, H., Zhag, M., Chu, C., Li, Z., Aluru, M., Aluru, S., Schnable, P. S. and Yin, Y. 2017. RD26 mediates crosstalk between drought and brassinosteroid signalling pathways. Nat. Commun. 8:14573.
  35. Zalar, P., Gostincar, C., de Hoog, G. S., Ursic, V., Sudhadham, M. and Gunde-Cimerman, N. 2008. Redefinition of Aureobasidium pullulans and its varieties. Stud. Mycol. 61:21-38. https://doi.org/10.3114/sim.2008.61.02