DOI QR코드

DOI QR Code

The Use of Artificial Intelligence in Healthcare in Medical Image Processing

  • Received : 2024.01.05
  • Published : 2024.01.30

Abstract

AI or Artificial Intelligence has been a significant tool used in the organisational backgrounds for an effective improvement in the management methods. The processing of the information and the analysis of the data for the further achievement of heightened efficiency can be performed by AI through its data analytics measures. In the medical field, AI has been integrated for an improvement within the management of the medical services and to note a rise in the levels of customer satisfaction. With the benefits of reasoning and problem solving, AI has been able to initiate a range of benefits for both the consumers and the medical personnel. The main benefits which have been noted in the integration of AI would be integrated into the study. The issues which are noted with the integrated AI usage for the medical sector would also be identified in the study. Medical Image Processing has been seen to integrate 3D image datasets with the medical industry, in terms of Computed Tomography (CT) or Magnetic Resonance Imaging (MRI). The usage of such medical devices have occurred in the diagnosis of the patients, the development of guidance towards medical intervention and an overall increase in the medical efficiency. The study would focus on such different tools, adhered with AI for increased medical improvement.

Keywords

References

  1. Oren, o., gersh, B. J., & Bhatt, D.L . (2020). Artificial intelligence in medical imaging: switching from radiographic pathological data to clinically meaningful endpoints. The Lancet Digital Health, 2(9), e486-e488. Https://www.thelancet.com/joumals/landig/article/PIS2589-7500(20)30160/fulltext. https://doi.org/10.1016/S2589-7500(20)30160-6
  2. Ranschaert, E.R., Morozov, S.,& Algra. P.R. (Eds.). (2019). Artificial intelligence in medical imaging: opportunities, applications and risks.Springer. Https://link.springer.com/content/pdf/10.1007/978-3-319-94878-2.pdf
  3. Langlotz, C.P., Allen, B., Erickson, B. J., Kalpathy-Cramer, J., Bigelow, K., cook, T.S., ...& kandarpa,K. (2019). A roadmap for medical imaging: from the (2018) NIH/RSNA/ACR/the Academy Workshop. Radiology, 291(3), 781-791. Https://pubs.rsna.org/doi/abs/10.1148/radiol.2019190613.
  4. Prevedello. L.M., Halabi, S.S., Shih, G., Wu, C.C., kohli, M.D., Chokshi, F.H., ...& Flanders, A.E. (2019). Challenges related to artificial intelligence research in medical imaging and the importance of image analysis competitions. Radiology: Artificial Intelligence, 1(1), e180031. Https://pubs.rsna.org/doi/abs/10.1148/ryai.2019180031
  5. Albahri. O.S., Zaidan, A.A., Albahri, A.S., Zaidan, B.B., Abdulkareem, K.H., Al-Qaysi, Z.T., ...& Rashid, N.A. (2020). Systematic review of artificial intelligence techniques in the detection.
  6. (31) Sarvamangala, D.R., & Kulkarni, R.V. (2022). Convolutional neural networks in medical image understanding: a survery. Evolutionary intelligence, 15(1), 1-22. Https://link.spring.com/article/10.1007/s12065-02000540-3
  7. Puttagunta. M., & Ravi, S. (2021). Medical image analysis based on deep learning approach. Multimedia tools and applications, 80, 24365-24398. Https://link.springer.com/article/10.1007/s11042-021-10707-4
  8. Hesamian M.H., Jis, W., He, X., & Kennedy, P.(2019). Deep learning techniques for medical image segmentation: achievements and challenges. Journal of digital imaging, 32, 582-596. Hesamian https://doi.org/10.1007/s10278-019-00227-x
  9. Jha, D., Riegler, M.A., Johansen, D., Halvorsen, P., & Johansen, H.D. (2020, July). Doubleu-net: A deep convolutional neural network for medical image segmentation. In (2020) IEEE 33rd International symposium on computer-based medical systems (C.B.M.S) (pp). (558-564) IEEE
  10. https://link.springer.com/article/10.1007/s11042-021-10707-4
  11. Tournier, J. D., Smith, R., Raffelt, D., Tabbara, R., Dhollander, T., Pietsch, M.,... & Connelly, A. (2019).MRtrix3: A fast, flexible and open software framework formedical image processing and visualisation. Neuroimage, 202,116137. https://www.sciencedirect.com/science/article/pii/S1053811919307281 1053811919307281
  12. Du, G., Cao, X., Liang, J., Chen, X., & Zhan, Y. (2020).Medical image segmentation based on u-net:A review. Journal of Imaging Science & Technology, 64(2). https://www.search.ebscohost.com/login.aspx?direct=true&.profile=ehost&scope=site&authtype=crawler&jrnl=10623701&AN=143320555&h=KASgeRwxnro0U6c%2Bn8Bxv0rwbVLnFhteiZ8KAp3ttWdmhbC82%2FNLi2Wuzl%2BOxMPR2ZCizcWcr9WaR9R1xCr3Nw%3D%3D&crl=c
  13. Chen, X., Williams, B. M., Vallabhaneni, S. R., Czanner, G., Williams, R., & Zheng, Y. (2019). Learning active contour models for medical image segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition(pp. 11632-11640).
  14. Kaissis, G. A., Makowski, M. R., Ruckert, D., & Braren, R. F. (2020). Secure, privacy-preserving and federated machine learning in medical imaging. Nature Machine Intelligence, 2(6), 305-311. https://www.naturre.com/articles/s42256-020-0186-1. https://doi.org/10.1038/s42256-020-0186-1
  15. Deep learning and medical image processing for coronavirus (COVID-19) pandemic: A survey https://www.sciencedirect.com/science/article/pii/S2210670720308076
  16. Bhattacharya, S., Maddikunta, P. K. R., Pham,Q. V., Gadekallu, T. R., Chowdhary, C. L., Alazab, M., & Piran, M. J. (2021). Deep learning and medical image processing for coronavirus ( COVID-19) pandemic: A survey. Sustainable cities and society, 65, 102589. https://www.sciencedirect.com/science/article/pii/S2210670720308076 10670720308076
  17. A review of the application of deep learning in medical image classification and segmentation https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327346/
  18. Cai, L., Gao, J., & Zhao, D.(2020). A review of the application of deep learning in medical image classification and segmentation. Annals of translational medicine, 8(11). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327346/
  19. Artificial intelligence in healthcare https://books.google.com.sa/books?lr=&id=FDLXDwAAQBAJ&oi=fnd&pg=PP1&dq=Artificial+Int&redir_esc=y#v=onepage&q=Artificial%20Int&f=false
  20. Bohr, A.,& Memarzadeh, K. (Eds.). (2020). Artificial intelligence in healthcare. Academic Press. https://books.google.com/books?h1=en&lr=&id=FDLXDwAAQBAJ&oi=fnd&pg=PP1&dq=Artificial+Intelligence+in+Healthcare+in+Medical+Image+Processing&ots=-SNKOCC7CD&sig=UBV9QnZzlz65VWy7IDnU40fJhFI
  21. Willemink, M. J., Koszek, W. A., Hardell, C., Wu, J., Fleischmann, D., Harvey, H., ... & Lungeen, M. P.(2020). Preparing medical imaging data for machine learning. Radiology, 295(1), 4-15. https://pubs.rsna.org/doi/abs/10.1148/radioI.2020192224
  22. Ma, X., Niu, Y., Gu, L., Wang, Y., Zhao, Y., Bailey, J., & Lu, F. (2021). Understanding adversarial attacks on deep learning based medical image analysis systems. Pattern Recognition, 110, 107332. https://www.sciencedirect.com/science/articIe/pii/S0031320320301357
  23. Castiglioni, I., Rundo, L., Codari, M., ... & Sardanelli , F. (2021). AI applications to medical images: From machine learning to deep learning.Phvsica Medica, 83, 9-24. https://www.sciencedirect.com/science/article/pii/SII20179721000946 1000946
  24. Mongan, J., Moy, & Kahn Jr, C. E. (2020). Checklist for artificial intelligence in medical imaging (CLAIM): a guide for authors and reviewers. Radiology: Artificial Intelligence, 2(2), e200029. https://pubs.rsna.rsna.org/doi/abs/10.1148/ryai.2020200029
  25. Review of Artificial Intelligence Techniques in Imaging Data Acquisition, Segmentation, and Diagnosis for COVID-19 https://ieeexplore.ieee.org/abstract/document/9069255
  26. 12/Shi, F., Wang J., Shi, J., Wu, Z., Wang, Q., Tang, Z., ... & Shen, D. (2020). Review of artificial intelligence techniques in imaging data acquisition, segmentation, and diagnosis for COVID-19.IEEE reviews in biomedical engineering,14, 4-15.
  27. Singh, A., Sengupta, S., & Lakshminarayanan, V.(2020). Explainable deep Leaming models in medical image analysis. Journal of imaging, 6(6), 52.
  28. Manne, R., & Kantheri, S. C. (2021). Application of artificial intelligence in healthcare: chances and challenges. Current Journal of Applied Science and Technology, 40(6), 78-89. https://doi.org/10.9734/cjast/2021/v40i631320
  29. Application of Artificial Intelligence in Healthcare: Chances and Challenges https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4393347