References
- Oren, o., gersh, B. J., & Bhatt, D.L . (2020). Artificial intelligence in medical imaging: switching from radiographic pathological data to clinically meaningful endpoints. The Lancet Digital Health, 2(9), e486-e488. Https://www.thelancet.com/joumals/landig/article/PIS2589-7500(20)30160/fulltext. https://doi.org/10.1016/S2589-7500(20)30160-6
- Ranschaert, E.R., Morozov, S.,& Algra. P.R. (Eds.). (2019). Artificial intelligence in medical imaging: opportunities, applications and risks.Springer. Https://link.springer.com/content/pdf/10.1007/978-3-319-94878-2.pdf
- Langlotz, C.P., Allen, B., Erickson, B. J., Kalpathy-Cramer, J., Bigelow, K., cook, T.S., ...& kandarpa,K. (2019). A roadmap for medical imaging: from the (2018) NIH/RSNA/ACR/the Academy Workshop. Radiology, 291(3), 781-791. Https://pubs.rsna.org/doi/abs/10.1148/radiol.2019190613.
- Prevedello. L.M., Halabi, S.S., Shih, G., Wu, C.C., kohli, M.D., Chokshi, F.H., ...& Flanders, A.E. (2019). Challenges related to artificial intelligence research in medical imaging and the importance of image analysis competitions. Radiology: Artificial Intelligence, 1(1), e180031. Https://pubs.rsna.org/doi/abs/10.1148/ryai.2019180031
- Albahri. O.S., Zaidan, A.A., Albahri, A.S., Zaidan, B.B., Abdulkareem, K.H., Al-Qaysi, Z.T., ...& Rashid, N.A. (2020). Systematic review of artificial intelligence techniques in the detection.
- (31) Sarvamangala, D.R., & Kulkarni, R.V. (2022). Convolutional neural networks in medical image understanding: a survery. Evolutionary intelligence, 15(1), 1-22. Https://link.spring.com/article/10.1007/s12065-02000540-3
- Puttagunta. M., & Ravi, S. (2021). Medical image analysis based on deep learning approach. Multimedia tools and applications, 80, 24365-24398. Https://link.springer.com/article/10.1007/s11042-021-10707-4
- Hesamian M.H., Jis, W., He, X., & Kennedy, P.(2019). Deep learning techniques for medical image segmentation: achievements and challenges. Journal of digital imaging, 32, 582-596. Hesamian https://doi.org/10.1007/s10278-019-00227-x
- Jha, D., Riegler, M.A., Johansen, D., Halvorsen, P., & Johansen, H.D. (2020, July). Doubleu-net: A deep convolutional neural network for medical image segmentation. In (2020) IEEE 33rd International symposium on computer-based medical systems (C.B.M.S) (pp). (558-564) IEEE
- https://link.springer.com/article/10.1007/s11042-021-10707-4
- Tournier, J. D., Smith, R., Raffelt, D., Tabbara, R., Dhollander, T., Pietsch, M.,... & Connelly, A. (2019).MRtrix3: A fast, flexible and open software framework formedical image processing and visualisation. Neuroimage, 202,116137. https://www.sciencedirect.com/science/article/pii/S1053811919307281 1053811919307281
- Du, G., Cao, X., Liang, J., Chen, X., & Zhan, Y. (2020).Medical image segmentation based on u-net:A review. Journal of Imaging Science & Technology, 64(2). https://www.search.ebscohost.com/login.aspx?direct=true&.profile=ehost&scope=site&authtype=crawler&jrnl=10623701&AN=143320555&h=KASgeRwxnro0U6c%2Bn8Bxv0rwbVLnFhteiZ8KAp3ttWdmhbC82%2FNLi2Wuzl%2BOxMPR2ZCizcWcr9WaR9R1xCr3Nw%3D%3D&crl=c
- Chen, X., Williams, B. M., Vallabhaneni, S. R., Czanner, G., Williams, R., & Zheng, Y. (2019). Learning active contour models for medical image segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition(pp. 11632-11640).
- Kaissis, G. A., Makowski, M. R., Ruckert, D., & Braren, R. F. (2020). Secure, privacy-preserving and federated machine learning in medical imaging. Nature Machine Intelligence, 2(6), 305-311. https://www.naturre.com/articles/s42256-020-0186-1. https://doi.org/10.1038/s42256-020-0186-1
- Deep learning and medical image processing for coronavirus (COVID-19) pandemic: A survey https://www.sciencedirect.com/science/article/pii/S2210670720308076
- Bhattacharya, S., Maddikunta, P. K. R., Pham,Q. V., Gadekallu, T. R., Chowdhary, C. L., Alazab, M., & Piran, M. J. (2021). Deep learning and medical image processing for coronavirus ( COVID-19) pandemic: A survey. Sustainable cities and society, 65, 102589. https://www.sciencedirect.com/science/article/pii/S2210670720308076 10670720308076
- A review of the application of deep learning in medical image classification and segmentation https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327346/
- Cai, L., Gao, J., & Zhao, D.(2020). A review of the application of deep learning in medical image classification and segmentation. Annals of translational medicine, 8(11). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327346/
- Artificial intelligence in healthcare https://books.google.com.sa/books?lr=&id=FDLXDwAAQBAJ&oi=fnd&pg=PP1&dq=Artificial+Int&redir_esc=y#v=onepage&q=Artificial%20Int&f=false
- Bohr, A.,& Memarzadeh, K. (Eds.). (2020). Artificial intelligence in healthcare. Academic Press. https://books.google.com/books?h1=en&lr=&id=FDLXDwAAQBAJ&oi=fnd&pg=PP1&dq=Artificial+Intelligence+in+Healthcare+in+Medical+Image+Processing&ots=-SNKOCC7CD&sig=UBV9QnZzlz65VWy7IDnU40fJhFI
- Willemink, M. J., Koszek, W. A., Hardell, C., Wu, J., Fleischmann, D., Harvey, H., ... & Lungeen, M. P.(2020). Preparing medical imaging data for machine learning. Radiology, 295(1), 4-15. https://pubs.rsna.org/doi/abs/10.1148/radioI.2020192224
- Ma, X., Niu, Y., Gu, L., Wang, Y., Zhao, Y., Bailey, J., & Lu, F. (2021). Understanding adversarial attacks on deep learning based medical image analysis systems. Pattern Recognition, 110, 107332. https://www.sciencedirect.com/science/articIe/pii/S0031320320301357
- Castiglioni, I., Rundo, L., Codari, M., ... & Sardanelli , F. (2021). AI applications to medical images: From machine learning to deep learning.Phvsica Medica, 83, 9-24. https://www.sciencedirect.com/science/article/pii/SII20179721000946 1000946
- Mongan, J., Moy, & Kahn Jr, C. E. (2020). Checklist for artificial intelligence in medical imaging (CLAIM): a guide for authors and reviewers. Radiology: Artificial Intelligence, 2(2), e200029. https://pubs.rsna.rsna.org/doi/abs/10.1148/ryai.2020200029
- Review of Artificial Intelligence Techniques in Imaging Data Acquisition, Segmentation, and Diagnosis for COVID-19 https://ieeexplore.ieee.org/abstract/document/9069255
- 12/Shi, F., Wang J., Shi, J., Wu, Z., Wang, Q., Tang, Z., ... & Shen, D. (2020). Review of artificial intelligence techniques in imaging data acquisition, segmentation, and diagnosis for COVID-19.IEEE reviews in biomedical engineering,14, 4-15.
- Singh, A., Sengupta, S., & Lakshminarayanan, V.(2020). Explainable deep Leaming models in medical image analysis. Journal of imaging, 6(6), 52.
- Manne, R., & Kantheri, S. C. (2021). Application of artificial intelligence in healthcare: chances and challenges. Current Journal of Applied Science and Technology, 40(6), 78-89. https://doi.org/10.9734/cjast/2021/v40i631320
- Application of Artificial Intelligence in Healthcare: Chances and Challenges https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4393347