DOI QR코드

DOI QR Code

Estimating the tensile strength of geopolymer concrete using various machine learning algorithms

  • Danial Fakhri (Rock Mechanics Division, School of Engineering, Tarbiat Modares University) ;
  • Hamid Reza Nejati (Rock Mechanics Division, School of Engineering, Tarbiat Modares University) ;
  • Arsalan Mahmoodzadeh (Rock Mechanics Division, School of Engineering, Tarbiat Modares University) ;
  • Hamid Soltanian (Drilling & Well Completion Technologies & Research Group, Research Institution of Petroleum Industry (RIPI)) ;
  • Ehsan Taheri (Rock Mechanics Division, School of Engineering, Tarbiat Modares University)
  • Received : 2023.08.30
  • Accepted : 2023.09.12
  • Published : 2024.02.25

Abstract

Researchers have embarked on an active investigation into the feasibility of adopting alternative materials as a solution to the mounting environmental and economic challenges associated with traditional concrete-based construction materials, such as reinforced concrete. The examination of concrete's mechanical properties using laboratory methods is a complex, time-consuming, and costly endeavor. Consequently, the need for models that can overcome these drawbacks is urgent. Fortunately, the ever-increasing availability of data has paved the way for the utilization of machine learning methods, which can provide powerful, efficient, and cost-effective models. This study aims to explore the potential of twelve machine learning algorithms in predicting the tensile strength of geopolymer concrete (GPC) under various curing conditions. To fulfill this objective, 221 datasets, comprising tensile strength test results of GPC with diverse mix ratios and curing conditions, were employed. Additionally, a number of unseen datasets were used to assess the overall performance of the machine learning models. Through a comprehensive analysis of statistical indices and a comparison of the models' behavior with laboratory tests, it was determined that nearly all the models exhibited satisfactory potential in estimating the tensile strength of GPC. Nevertheless, the artificial neural networks and support vector regression models demonstrated the highest robustness. Both the laboratory tests and machine learning outcomes revealed that GPC composed of 30% fly ash and 70% ground granulated blast slag, mixed with 14 mol of NaOH, and cured in an oven at 300°F for 28 days exhibited superior tensile strength.

Keywords

References

  1. Abedini, M. and Zhang, C. (2022), "Residual capacity assessment of post-damaged RC columns exposed to high strain rate loading", Steel Compos. Struct., 45(3), 389-408. https://doi.org/10.12989/scs.2022.45.3.389.
  2. Awoyera, P.O., Kirgiz, M.S., Viloria, A. and Ovallos-Gazabon, D. (2020), "Estimating strength properties of geopolymer self-compacting concrete using machine learning techniques", J. Mater. Res. Technol., 9(4), 9016-9028. https://doi.org/10.1016/j.jmrt.2020.06.008.
  3. Abdalla, A. and Salih, A. (2022), "Implementation of multi-expression programming (MEP), artificial neural network (ANN), and M5P-tree to forecast the compression strength cement-based mortar modified by calcium hydroxide at different mix proportions and curing ages", Innov. Infrastr. Solut., 7(2), 153. https://doi.org/10.1007/s41062-022-00761-8.
  4. Aboshia, A.M.A., Rahmat, R.A., Zain, M.F.M. and Ismail, A. (2017), "Enhancing mortar strengths by ternary geopolymer binder of metakaolin, slag, and palm ash", Int. J. Build. Pathol. Adapt., 35(5), 438-455. https://doi.org/10.1108/IJBPA-03-2017-0014.
  5. Ahmad, M.W., Reynolds, J. and Rezgui, Y. (2018), "Predictive modelling for solar thermal energy systems: A comparison of support vector regression, random forest, extra trees and regression trees", J. Clean. Prod., 203, 810-821. https://doi.org/10.1016/j.jclepro.2018.08.207.
  6. Andrew, R.M. (2018), "Global CO2 emissions from cement production", Earth Syst. Sci. Data, 10(1), 195-217. https://doi.org/10.5194/essd-10-195-2018.
  7. Anuradha, R., Sreevidya, V., Venkatasubramani, R. and Rangan, B.V. (2012), "Modified guidelines for geopolymer concrete mix design using Indian standard", Asian J. Civil Eng., 13(3), 353-364.
  8. Armaghani, D.J. and Asteris, P.G. (2021), "A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength", Neural Comput. Appl., 33(9), 4501-4532. https://doi.org/10.1007/s00521-020-05244-4.
  9. Asteris, P.G., Cavaleri, L., Ly, H.B. and Pham, B.T. (2021), "Surrogate models for the compressive strength mapping of cement mortar materials", Soft Comput., 25(8), 6347-6372. https://doi.org/10.1007/s00500-021-05626-3.
  10. Awoyera, P.O., Kirgiz, M.S., Viloria, A. and Ovallos-Gazabon, D. (2020), "Estimating strength properties of geopolymer self-compacting concrete using machine learning techniques", J. Mater. Res. Technol., 9(4), 9016-9028. https://doi.org/10.1016/j.jmrt.2020.06.008.
  11. Al-Gburi, S.N.A., Akpinar, P. and Helwan, A. (2022), "Machine learning in concrete's strength prediction", Comput. Concrete, 29(6), 433-444. https://doi.org/10.12989/cac.2022.29.6.433.
  12. Bae, H.J. and Koumoutsakos, P. (2022), "Scientific multi-agent reinforcement learning for wall-models of turbulent flows", Nat. Commun., 13(1), 1443. https://doi.org/10.1038/s41467-022-28957-7.
  13. Bakharev, T. (2005), "Geopolymeric materials prepared using Class F fly ash and elevated temperature curing", Cement Concrete Res., 35(6), 1224-1232. https://doi.org/10.1016/j.cemconres.2004.06.031.
  14. Bellum, R.R., Nerella, R., Madduru, S.R. and Indukuri, C.S. (2019), "Mix design and mechanical properties of fly ash and GGBFS-synthesized alkali-activated concrete (AAC)", Infrastr., 4(2), 20. https://doi.org/10.3390/infrastructures4020020.
  15. Beskopylny, A.N., Stel'makh, S.A., Shcherban', E.M., Mailyan, L.R., Meskhi, B., Razveeva, I., Chernil'nik, A. and Beskopylny, N. (2022), "Concrete strength prediction using machine learning methods catboost, k-nearest neighbors, support vector regression", Appl. Sci., 12(21), 10864. https://doi.org/10.3390/app122110864.
  16. Bishop, C.M. (2006), Pattern Recognition and Machine Learning, Springer, New York, NY, USA.
  17. Bondar, D., Ma, Q., Soutsos, M., Basheer, M., Provis, J.L. and Nanukuttan, S. (2018), "Alkali activated slag concretes designed for a desired slump, strength and chloride diffusivity", Constr. Build. Mater., 190, 191-199. https://doi.org/10.1016/j.conbuildmat.2018.09.124.
  18. Bondar, D., Nanukuttan, S., Provis, J.L. and Soutsos, M. (2019), "Efficient mix design of alkali activated slag concretes based on packing fraction of ingredients and paste thickness", J. Clean. Prod., 218, 438-449. https://doi.org/10.1016/j.jclepro.2019.01.332.
  19. Bui, D.K., Nguyen, T., Chou, J.S., Nguyen-Xuan, H. and Ngo, T.D. (2018), "A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete", Constr. Build. Mater., 180, 320-333. https://doi.org/10.1016/j.conbuildmat.2018.05.201.
  20. Cai, J., Pan, J., Li, G. and Elchalakani, M. (2023), "Behaviors of eccentrically loaded ECC-encased CFST columns after fire exposure", Eng. Struct., 289, 116258. https://doi.org/10.1016/j.engstruct.2023.116258.
  21. Caliskan, A., Demirhan, S. and Tekin, R. (2022), "Comparison of different machine learning methods for estimating compressive strength of mortars", Constr. Build. Mater., 335, 127490. https://doi.org/10.1016/j.conbuildmat.2022.127490. 
  22. Chen, T. and Guestrin, C. (2016), "XGBoost: A scalable tree boosting system", Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August.
  23. Cortes, C. and Vapnik, V. (1995), "Support-vector networks", Mach. Learn., 20(3), 273-297. https://doi.org/10.1007/BF00994018.
  24. Cover, T. and Hart, P. (1967), "Nearest neighbor pattern classification", IEEE Trans. Inform. Theory, 13(1), 21-27. https://doi.org/10.1109/TIT.1967.1053964.
  25. Dai, Y., Roy, K., Fang, Z., Chen, B., Raftery, G.M. and Lim, J.B.P. (2022), "A novel machine learning model to predict the moment capacity of cold-formed steel channel beams with edge-stiffened and un-stiffened web holes", J. Build. Eng., 53, 104592. https://doi.org/10.1016/j.jobe.2022.104592.
  26. Dao, D.V., Adeli, H., Ly, H.B., Le, L.M., Le, V.M., Le, T.T. and Pham, B.T. (2020), "A sensitivity and robustness analysis of GPR and ANN for high-performance concrete compressive strength prediction using a monte carlo simulation", Sustainab., 12(3), 830. https://doi.org/10.3390/su12030830.
  27. Degtyarev, V.V. and Tsavdaridis, K.D. (2022), "Buckling and ultimate load prediction models for perforated steel beams using machine learning algorithms", J. Build. Eng., 51, 104316. https://doi.org/10.1016/j.jobe.2022.104316.
  28. Dehestani, A., Kazemi, F., Abdi, R. and Nitka, M. (2022), "Prediction of fracture toughness in fibre-reinforced concrete, mortar, and rocks using various machine learning techniques", Eng. Fract. Mech., 276, 108914. https://doi.org/10.1016/j.engfracmech.2022.108914.
  29. Fakhri, D., Khodayari, A., Mahmoodzadeh, A., Hosseini, M., Hashim Ibrahim, H. and Hussein Mohammed, A. (2022), "Prediction of mixed-mode I and II effective fracture toughness of several types of concrete using the extreme gradient boosting method and metaheuristic optimization algorithms", Eng. Fract. Mech., 276, 108916. https://doi.org/10.1016/j.engfracmech.2022.108916.
  30. Fakhri, D., Mahmoodzadeh, A., Hussein Mohammed, A., Khodayari, A., Hashim Ibrahim, H., Rashidi, S. and Taher Karim, S.H. (2023), "Forecasting failure load of Sandstone under different freezing-thawing cycles using Gaussian process regression method and grey wolf optimization algorithm", Theoret. Appl. Fract. Mech., 125, 103876. https://doi.org/10.1016/j.tafmec.2023.103876.
  31. Farina, I., Modano, M., Zuccaro, G., Goodall, R. and Colangelo, F. (2018), "Improving flexural strength and toughness of geopolymer mortars through additively manufactured metallic rebars", Compos. Part B: Eng., 145, 155-161. https://doi.org/10.1016/j.compositesb.2018.03.017.
  32. Geurts, P., Ernst, D. and Wehenkel, L. (2006), "Extremely randomized trees", Mach. Learn., 63(1), 3-42. https://doi.org/10.1007/s10994-006-6226-1.
  33. Garg, A., Aggarwal, P., Aggarwal, Y., Belarbi, M.O., Chalak, H.D., Tounsi, A. and Gulia, R. (2022), "Machine learning models for predicting the compressive strength of concrete containing nano silica", Comput. Concrete, 30(1), 33-42. https://doi.org/10.12989/cac.2022.30.1.033.
  34. Ghosh, A. and Ransinchung, G.D. (2022), "Application of machine learning algorithm to assess the efficacy of varying industrial wastes and curing methods on strength development of geopolymer concrete", Constr. Build. Mater., 341, 127828. https://doi.org/10.1016/j.conbuildmat.2022.127828.
  35. Guo, M., Huang, H., Zhang, W., Xue, C. and Huang, M. (2022), "Assessment of RC frame capacity subjected to a loss of corner column", J. Struct. Eng., 148(9), 04022122. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003423.
  36. He, H., Shuang, E., Wen, T., Yao, J., Wang, X., He, C. and Yu, Y. (2023), "Employing novel N-doped graphene quantum dots to improve chloride binding of cement", Constr. Build. Mater., 401, 132944. https://doi.org/10.1016/j.conbuildmat.2023.132944.
  37. Huang, H., Guo, M., Zhang, W. and Huang, M. (2022a), "Seismic behavior of strengthened RC columns under combined loadings", J. Bridge Eng., 27(6), 05022005. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001871.
  38. Huang, H., Li, M., Zhang, W. and Yuan, Y. (2022b), "Seismic behavior of a friction-type artificial plastic hinge for the precast beam-column connection", Arch. Civil Mech. Eng., 22(4), 201. https://doi.org/10.1007/s43452-022-00526-1.
  39. Huang, H., Yuan, Y., Zhang, W. and Li, M. (2021), "Seismic behavior of a replaceable artificial controllable plastic hinge for precast concrete beam-column joint", Eng. Struct., 245, 112848. https://doi.org/10.1016/j.engstruct.2021.112848.
  40. Jin, M., Ma, Y., Li, W., Huang, J., Yan, Y., Zeng, H., Lu, C. and Liu, J. (2023), "Multi-scale investigation on composition-structure of C-(A)-S-H with different Al/Si ratios under attack of decalcification action", Cement Concrete Res., 172, 107251. https://doi.org/10.1016/j.cemconres.2023.107251.
  41. Kanagaraj, B., Kiran, T., Gunasekaran, J., Nammalvar, A., Arulraj, P., Gurupatham, B.G.A. and Roy, K. (2022), "Performance of sustainable insulated wall panels with geopolymer concrete", Mater., 15(24), 8801. https://doi.org/10.3390/ma15248801.
  42. Kanagaraj, B., Nammalvar, A., Andrushia, A.D., Gurupatham, B.G.A. and Roy, K. (2023), "Influence of nano composites on the impact resistance of concrete at elevated temperatures", Fire, 6(4), 135. https://doi.org/10.3390/fire6040135.
  43. Komnitsas, K.A. (2011), "Potential of geopolymer technology towards green buildings and sustainable cities", Procedia Eng., 21, 1023-1032. https://doi.org/10.1016/j.proeng.2011.11.2108.
  44. Kupaei, R.H., Alengaram, U.J., Jumaat, M.Z.B. and Nikraz, H. (2013), "Mix design for fly ash based oil palm shell geopolymer lightweight concrete", Constr. Build. Mater., 43, 490-496. https://doi.org/10.1016/j.conbuildmat.2013.02.071.
  45. Li, J., Chen, M. and Li, Z. (2022), "Improved soil-structure interaction model considering time-lag effect", Comput. Geotech., 148, 104835. https://doi.org/10.1016/j.compgeo.2022.104835.
  46. Luo, Z., Wang, H. and Li, S. (2022), "Prediction of International roughness index based on stacking fusion model", Sustainab., 14(12), 6949. https://doi.org/10.3390/su14126949.
  47. LeCun, Y., Bengio, Y. and Hinton, G. (2015), "Deep learning", Nat., 521(7553), 436-444. https://doi.org/10.1038/nature14539.
  48. Lee, N.K., An, G.H., Koh, K.T. and Ryu, G.S. (2016), "Improved reactivity of fly ash-slag geopolymer by the addition of silica fume", Adv. Mater. Sci. Eng., 2016, 2192053. https://doi.org/10.1155/2016/2192053.
  49. Li, N., Zhang, Z., Shi, C. and Zhang, J. (2018), "Some progresses in the challenges for geopolymer", IOP Conf. Ser.: Mater. Sci. Eng., 431(2), 022003. https://doi.org/10.1088/1757-899X/431/2/022003.
  50. Liu, X., Athanasiou, C.E., Padture, N.P., Sheldon, B.W. and Gao, H. (2020), "A machine learning approach to fracture mechanics problems", Acta Mater., 190, 105-112. https://doi.org/10.1016/j.actamat.2020.03.016.
  51. Loh, W.Y. (2011), "Classification and regression trees", Wiley Interdiscip. Rev. Data Min. Knowl. Discov., 1(1), 14-23. https://doi.org/10.1002/widm.8.
  52. Li, Z. and Yan, G. (2022), "Machine learning for structural stability: Predicting dynamics responses using physics-informed neural networks", Comput. Concrete, 29(6), 419-432. https://doi.org/10.12989/cac.2022.29.6.419.
  53. Miladirad, K., Mohammadi Golafshani, E., Safehian, M. and Sarkar, A. (2021), "Modeling the mechanical properties of rubberized concrete using machine learning methods", Comput. Concrete, 28(6), 567-583. https://doi.org/10.12989/cac.2021.28.6.567.
  54. Marani, A. and Nehdi, M.L. (2020), "Machine learning prediction of compressive strength for phase change materials integrated cementitious composites", Constr. Build. Mater., 265, 120286. https://doi.org/10.1016/j.conbuildmat.2020.120286.
  55. Mohammed, A., Rafiq, S., Sihag, P., Kurda, R., Mahmood, W., Ghafor, K. and Sarwar, W. (2020), "ANN, M5P-tree and nonlinear regression approaches with statistical evaluations to predict the compressive strength of cement-based mortar modified with fly ash", J. Mater. Res. Technol., 9(6), 12416-12427. https://doi.org/10.1016/j.jmrt.2020.08.083.
  56. Ng, T.S. and Foster, S.J. (2013), "Development of a mix design methodology for high-performance geopolymer mortars", Struct. Concrete, 14(2), 148-156. https://doi.org/10.1002/suco.201200018.
  57. Nguyen, H., Vu, T., Vo, T.P. and Thai, H.T. (2021), "Efficient machine learning models for prediction of concrete strengths", Constr. Build. Mater., 266, 120950. https://doi.org/10.1016/j.conbuildmat.2020.120950.
  58. Ozcan, G., Kocak, Y. and Gulbandilar, E. (2017), "Estimation of compressive strength of BFS and WTRP blended cement mortars with machine learning models", Comput. Concrete, 19(3), 275-282. https://doi.org/10.12989/cac.2017.19.3.275.
  59. Peng, J., Xu, C., Dai, B., Sun, L., Feng, J. and Huang, Q. (2022), "Numerical investigation of brittleness effect on strength and microcracking behavior of crystalline rock", Int. J. Geomech., 22(10), 04022178. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002529.
  60. Patankar, S.V., Ghugal, Y.M. and Jamkar, S.S. (2015), "Mix design of fly ash based geopolymer concrete", Adv. Struct. Eng., 3, 1619-1634. https://doi.org/10.1007/978-81-322-2187-6_123.
  61. Pavithra, P., Srinivasula Reddy, M., Dinakar, P., Hanumantha Rao, B., Satpathy, B.K. and Mohanty, A.N. (2016), "A mix design procedure for geopolymer concrete with fly ash", J. Clean. Prod., 133, 117-125. https://doi.org/10.1016/j.jclepro.2016.05.041.
  62. Phoo-ngernkham, T., Phiangphimai, C., Damrongwiriyanupap, N., Hanjitsuwan, S., Thumrongvut, J. and Chindaprasirt, P. (2018), "A mix design procedure for alkali-activated high-calcium fly ash concrete cured at ambient temperature", Adv. Mater. Sci. Eng., 2018, 2460403. https://doi.org/10.1155/2018/2460403.
  63. Parhi, S.K. and Patro, S.K. (2023), "Prediction of compressive strength of geopolymer concrete using a hybrid ensemble of grey wolf optimized machine learning estimators", J. Build. Eng., 71, 106521. https://doi.org/10.1016/j.jobe.2023.106521.
  64. Quinlan, J.R. (1986), "Induction of decision trees", Mach. Learn., 1(1), 81-106. https://doi.org/10.1007/BF00116251.
  65. Ren, C., Yu, J., Zhang, C., Liu, X., Zhu, Y. and Yao, W. (2023), "Micro-macro approach of anisotropic damage: A semi-analytical constitutive model of porous cracked rock", Eng. Fract. Mech., 290, 109483. https://doi.org/10.1016/j.engfracmech.2023.109483.
  66. Rafeet, A., Vinai, R., Soutsos, M. and Sha, W. (2017), "Guidelines for mix proportioning of fly ash/GGBS based alkali activated concretes", Constr. Build. Mater., 147, 130-142. https://doi.org/10.1016/j.conbuildmat.2017.04.036.
  67. Rangan, B.V. (2008), "Design and manufacture of flyash-based geopolymer concrete", Concrete Australia, 34(2), 37-43.
  68. Rasmussen, C.E. (2004), "Gaussian processes in machine learning", Advanced Lectures on Machine Learning: ML Summer Schools 2003, Canberra, Australia, February.
  69. Reddy, M.S., Dinakar, P. and Rao, B.H. (2018), "Mix design development of fly ash and ground granulated blast furnace slag based geopolymer concrete", J. Build. Eng., 20, 712-722. https://doi.org/10.1016/j.jobe.2018.09.010.
  70. Roy, D.M., Jiang, W. and Silsbee, M.R. (2000), "Chloride diffusion in ordinary, blended, and alkali-activated cement pastes and its relation to other properties", Cement Concrete Res., 30(12), 1879-1884. https://doi.org/10.1016/S0008-8846(00)00406-3.
  71. Schmidhuber, J. (2015), "Deep learning in neural networks: An overview", Neural Netw., 61, 85-117. https://doi.org/10.1016/j.neunet.2014.09.003.
  72. Schneider, M., Romer, M., Tschudin, M. and Bolio, H. (2011), "Sustainable cement production-present and future", Cement Concrete Res., 41(7), 642-650. https://doi.org/10.1016/j.cemconres.2011.03.019.
  73. Seeger, M. (2004), "Gaussian processes for machine learning", Int. J. Neural Syst., 14(2), 69-106. https://doi.org/10.1142/S0129065704001899.
  74. Sevakula, R.K., Au-Yeung, W.T.M., Singh, J.P., Heist, E.K., Isselbacher, E.M. and Armoundas, A.A. (2020), "State-of-the-art machine learning techniques aiming to improve patient outcomes pertaining to the cardiovascular system", J. Am. Heart Assoc., 9(4), e013924. https://doi.org/10.1161/JAHA.119.013924.
  75. Sevim, U.K., Bilgic, H.H., Cansiz, O.F., Ozturk, M. and Atis, C.D. (2021), "Compressive strength prediction models for cementitious composites with fly ash using machine learning techniques", Constr. Build. Mater., 271, 121584. https://doi.org/10.1016/j.conbuildmat.2020.121584.
  76. Silva, P.D., Sagoe-Crenstil, K. and Sirivivatnanon, V. (2007), "Kinetics of geopolymerization: Role of Al2O3 and SiO2", Cement Concrete Res., 37(4), 512-518. https://doi.org/10.1016/j.cemconres.2007.01.003.
  77. Tian, L.M., Jin, B.B. and Li, L. (2023a), "Axial compressive mechanical behaviors of a double-layer member", J. Struct. Eng., 149(8), 04023110. https://doi.org/10.1061/JSENDH.STENG-12175.
  78. Tian, L., Li, M., Li, L., Li, D. and Bai, C. (2023b), "Novel joint for improving the collapse resistance of steel frame structures in column-loss scenarios", Thin Wall. Struct., 182, 110219. https://doi.org/10.1016/j.tws.2022.110219.
  79. Talha Junaid, M., Kayali, O., Khennane, A. and Black, J. (2015), "A mix design procedure for low calcium alkali activated fly ash-based concretes", Constr. Build. Mater., 79, 301-310. https://doi.org/10.1016/j.conbuildmat.2015.01.048.
  80. Tin Kam, H. (1998), "The random subspace method for constructing decision forests", IEEE Trans. Pattern Anal. Mach. Intell., 20(8), 832-844. https://doi.org/10.1109/34.709601.
  81. Wang, H., Zhang, X. and Wang, M. (2023), "Rapid texture depth detection method considering pavement deformation calibration", Measure., 217, 113024. https://doi.org/10.1016/j.measurement.2023.113024.
  82. Wang, M., Yang, X. and Wang, W. (2022), "Establishing a 3D aggregates database from X-ray CT scans of bulk concrete", Constr. Build. Mater., 315, 125740. https://doi.org/10.1016/j.conbuildmat.2021.125740.
  83. Wang, Y.T., Zhang, X. and Liu, X.S. (2021), "Machine learning approaches to rock fracture mechanics problems: Mode-I fracture toughness determination", Eng. Fract. Mech., 253, 107890. https://doi.org/10.1016/j.engfracmech.2021.107890.
  84. Xu, H. and Van Deventer, J.S.J. (2000), "The geopolymerisation of alumino-silicate minerals", Int. J. Mineral Pr., 59(3), 247-266. https://doi.org/10.1016/S0301-7516(99)00074-5.
  85. Yang, C.Y.K., Pan, Q., Chen, K. and Zhu, X. (2017), "Parameter and design method for alkali- activated slag concrete mix", J. Civil Arch. Environ. Eng., 39(4), 122-127. https://doi.org/10.11835/j.issn.1674-4764.2017.04.019.
  86. Yip, C.K., Lukey, G.C. and van Deventer, J.S.J. (2005), "The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation", Cement Concrete Res., 35(9), 1688-1697. https://doi.org/10.1016/j.cemconres.2004.10.042. 
  87. Yao, W., Yu, J., Liu, X., Zhang, Z., Feng, X. and Cai, Y. (2023), "Experimental and theoretical investigation of coupled damage of rock under combined disturbance", Int. J. Rock Mech. Min. Sci., 164, 105355. https://doi.org/10.1016/j.ijrmms.2023.105355.
  88. Zhou, F., Jiang, H., Huang, L., Hu, Y., Xie, Z., Zeng, Z., Liu, M., Wang, B. and Zhou, X. (2023), "Early shrinkage modeling of complex internally confined concrete based on capillary tension theory", Build., 13(9), 2201. https://doi.org/10.3390/buildings13092201.
  89. Zhang, W., Lee, D., Ju, H. and Wang, L. (2022), "Identification of shear transfer mechanisms in RC beams by using machinelearning technique", Comput. Concrete, 20(1), 43-74. https://doi.org/10.12989/cac.2022.30.1.043.