과제정보
This research was supported by grants from the National Research Foundation funded by the Korean Ministry of Education, Science and Technology (NRF-2022R1A2C4001609) and the Korean Fund for Regenerative Medicine (KFRM) grant funded by the Korea government (the Ministry of Science and ICT, the Ministry of Health & Welfare) (22A0203L1). This research was also supported by the Chung-Ang University Graduate Research Scholarship in 2023.
참고문헌
- Barrangou R, Fremaux C, Deveau H et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709-1712 https://doi.org/10.1126/science.1138140
- Gasiunas G, Barrangou R, Horvath P and Siksnys V (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109, E2579-E2586 https://doi.org/10.1073/pnas.1208507109
- Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA and Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821 https://doi.org/10.1126/science.1225829
- Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 https://doi.org/10.1126/science.1231143
- Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339, 823-826 https://doi.org/10.1126/science.1232033
- Doudna JA and Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096
- Gillmore JD, Gane E, Taubel J et al (2021) CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N Engl J Med 385, 493-502 https://doi.org/10.1056/NEJMoa2107454
- Frangoul H, Altshuler D, Cappellini MD et al (2021) CRISPR-Cas9 gene editing for sickle cell disease and beta-thalassemia. N Engl J Med 384, 252-260 https://doi.org/10.1056/NEJMoa2031054
- Guo C, Ma X, Gao F and Guo Y (2023) Off-target effects in CRISPR/Cas9 gene editing. Front Bioeng Biotechnol 11, 1143157
- Zhang XH, Tee LY, Wang XG, Huang QS and Yang SH (2015) Off-target Effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids 4, e264
- Fu Y, Foden JA, Khayter C et al (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31, 822-826 https://doi.org/10.1038/nbt.2623
- Akcakaya P, Bobbin ML, Guo JA et al (2018) In vivo CRISPR editing with no detectable genome-wide off-target mutations. Nature 561, 416-419 https://doi.org/10.1038/s41586-018-0500-9
- Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA and Liu DR (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31, 839-843 https://doi.org/10.1038/nbt.2673
- Li D, Zhou H and Zeng X (2019) Battling CRISPR-Cas9 off-target genome editing. Cell Biol Toxicol 35, 403-406 https://doi.org/10.1007/s10565-019-09485-5
- Jiang F and Doudna JA (2017) CRISPR-Cas9 Structures and Mechanisms. Annu Rev Biophys 46, 505-529 https://doi.org/10.1146/annurev-biophys-062215-010822
- Nishimasu H, Ran FA, Hsu PD et al (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156, 935-949 https://doi.org/10.1016/j.cell.2014.02.001
- Pacesa M, Loeff L, Querques I, Muckenfuss LM, Sawicka M and Jinek M (2022) R-loop formation and conformational activation mechanisms of Cas9. Nature 609, 191-196 https://doi.org/10.1038/s41586-022-05114-0
- Jiang F, Taylor DW, Chen JS et al (2016) Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science 351, 867-871 https://doi.org/10.1126/science.aad8282
- Shmakov S, Smargon A, Scott D et al (2017) Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol 15, 169-182 https://doi.org/10.1038/nrmicro.2016.184
- Wu X, Scott DA, Kriz AJ et al (2014) Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol 32, 670-676 https://doi.org/10.1038/nbt.2889
- Kuscu C, Arslan S, Singh R, Thorpe J and Adli M (2014) Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol 32, 677-683 https://doi.org/10.1038/nbt.2916
- Tong B, Dong H, Cui Y, Jiang P, Jin Z and Zhang D (2020) The versatile type V CRISPR effectors and their application prospects. Front Cell Dev Biol 8, 622103
- Yan WX, Hunnewell P, Alfonse LE et al (2019) Functionally diverse type V CRISPR-Cas systems. Science 363, 88-91 https://doi.org/10.1126/science.aav7271
- Zetsche B, Gootenberg JS, Abudayyeh OO et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759-771 https://doi.org/10.1016/j.cell.2015.09.038
- Safari F, Zare K, Negahdaripour M, Barekati-Mowahed M and Ghasemi Y (2019) CRISPR Cpf1 proteins: structure, function and implications for genome editing. Cell Biosci 9, 36
- Stella S, Alcon P and Montoya G (2017) Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage. Nature 546, 559-563 https://doi.org/10.1038/nature22398
- Yamano T, Nishimasu H, Zetsche B et al (2016) Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 165, 949-962 https://doi.org/10.1016/j.cell.2016.04.003
- Kim D, Kim J, Hur JK, Been KW, Yoon SH and Kim JS (2016) Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat Biotechnol 34, 863-868 https://doi.org/10.1038/nbt.3609
- Kleinstiver BP, Tsai SQ, Prew MS et al (2016) Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat Biotechnol 34, 869-874 https://doi.org/10.1038/nbt.3620
- Swarts DC, van der Oost J and Jinek M (2017) Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a. Mol Cell 66, 221-233 e224
- Liu L, Chen P, Wang M et al (2017) C2c1-sgRNA complex structure reveals RNA-guided DNA cleavage mechanism. Mol Cell 65, 310-322 https://doi.org/10.1016/j.molcel.2016.11.040
- Shmakov S, Abudayyeh OO, Makarova KS et al (2015) Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell 60, 385-397 https://doi.org/10.1016/j.molcel.2015.10.008
- Yang H, Gao P, Rajashankar KR and Patel DJ (2016) PAM-dependent target DNA recognition and cleavage by C2c1 CRISPR-Cas endonuclease. Cell 167, 1814-1828 e1812
- Karvelis T, Bigelyte G, Young JK et al (2020) PAM recognition by miniature CRISPR-Cas12f nucleases triggers programmable double-stranded DNA target cleavage. Nucleic Acids Res 48, 5016-5023 https://doi.org/10.1093/nar/gkaa208
- Takeda SN, Nakagawa R, Okazaki S et al (2021) Structure of the miniature type V-F CRISPR-Cas effector enzyme. Mol Cell 81, 558-570 e553
- Xiao R, Li Z, Wang S, Han R and Chang L (2021) Structural basis for substrate recognition and cleavage by the dimerization-dependent CRISPR-Cas12f nuclease. Nucleic Acids Res 49, 4120-4128 https://doi.org/10.1093/nar/gkab179
- Omura SN, Nakagawa R, Sudfeld C et al (2023) Mechanistic and evolutionary insights into a type V-M CRISPR-Cas effector enzyme. Nat Struct Mol Biol 30, 1172-1182 https://doi.org/10.1038/s41594-023-01042-3
- Singh D, Mallon J, Poddar A et al (2018) Real-time observation of DNA target interrogation and product release by the RNA-guided endonuclease CRISPR Cpf1 (Cas12a). Proc Natl Acad Sci U S A 115, 5444-5449 https://doi.org/10.1073/pnas.1718686115
- Sternberg SH, Redding S, Jinek M, Greene EC and Doudna JA (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507, 62-67 https://doi.org/10.1038/nature13011
- Globyte V, Lee SH, Bae T, Kim JS and Joo C (2019) CRISPR/Cas9 searches for a protospacer adjacent motif by lateral diffusion. EMBO J 38, e99466
- Pacesa M, Lin CH, Clery A et al (2022) Structural basis for Cas9 off-target activity. Cell 185, 4067-4081 e4021
- Bae S, Park J and Kim JS (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473-1475 https://doi.org/10.1093/bioinformatics/btu048
- Xiao A, Cheng Z, Kong L et al (2014) CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics 30, 1180-1182 https://doi.org/10.1093/bioinformatics/btt764
- Kang SH, Lee WJ, An JH et al (2020) Prediction-based highly sensitive CRISPR off-target validation using target-specific DNA enrichment. Nat Commun 11, 3596
- Tsai SQ, Zheng Z, Nguyen NT et al (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33, 187-197 https://doi.org/10.1038/nbt.3117
- Yan WX, Mirzazadeh R, Garnerone S et al (2017) BLISS is a versatile and quantitative method for genome-wide profiling of DNA double-strand breaks. Nat Commun 8, 15058
- Crosetto N, Mitra A, Silva MJ et al (2013) Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nat Methods 10, 361-365 https://doi.org/10.1038/nmeth.2408
- Cameron P, Fuller CK, Donohoue PD et al (2017) Mapping the genomic landscape of CRISPR-Cas9 cleavage. Nat Methods 14, 600-606 https://doi.org/10.1038/nmeth.4284
- Wang X, Wang Y, Wu X et al (2015) Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors. Nat Biotechnol 33, 175-178 https://doi.org/10.1038/nbt.3127
- Marinov GK, Kim SH, Bagdatli ST et al (2023) CasKAS: direct profiling of genome-wide dCas9 and Cas9 specificity using ssDNA mapping. Genome Biol 24, 85
- Liang SQ, Liu P, Smith JL et al (2022) Genome-wide detection of CRISPR editing in vivo using GUIDE-tag. Nat Commun 13, 437
- Frock RL, Hu J, Meyers RM, Ho YJ, Kii E and Alt FW (2015) Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat Biotechnol 33, 179-186 https://doi.org/10.1038/nbt.3101
- Wienert B, Wyman SK, Richardson CD et al (2019) Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq. Science 364, 286-289 https://doi.org/10.1126/science.aav9023
- Tsai SQ, Nguyen NT, Malagon-Lopez J, Topkar VV, Aryee MJ and Joung JK (2017) CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets. Nat Methods 14, 607-614 https://doi.org/10.1038/nmeth.4278
- Kim D, Bae S, Park J et al (2015) Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods 12, 237-243 https://doi.org/10.1038/nmeth.3284
- Kwon J, Kim M, Hwang W et al (2023) Extru-seq: a method for predicting genome-wide Cas9 off-target sites with advantages of both cell-based and in vitro approaches. Genome Biol 24, 4
- Hu JH, Miller SM, Geurts MH et al (2018) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57-63 https://doi.org/10.1038/nature26155
- Nishimasu H, Shi X, Ishiguro S et al (2018) Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 361, 1259-1262 https://doi.org/10.1126/science.aas9129
- Kleinstiver BP, Pattanayak V, Prew MS et al (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490-495 https://doi.org/10.1038/nature16526
- Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX and Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84-88 https://doi.org/10.1126/science.aad5227
- Kulcsar PI, Talas A, Huszar K et al (2017) Crossing enhanced and high fidelity SpCas9 nucleases to optimize specificity and cleavage. Genome Biol 18, 190
- Casini A, Olivieri M, Petris G et al (2018) A highly specific SpCas9 variant is identified by in vivo screening in yeast. Nat Biotechnol 36, 265-271 https://doi.org/10.1038/nbt.4066
- Chen JS, Dagdas YS, Kleinstiver BP et al (2017) Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature 550, 407-410 https://doi.org/10.1038/nature24268
- Corsi GI, Qu K, Alkan F, Pan X, Luo Y and Gorodkin J (2022) CRISPR/Cas9 gRNA activity depends on free energy changes and on the target PAM context. Nat Commun 13, 3006
- Yin H, Song CQ, Suresh S et al (2018) Partial DNA-guided Cas9 enables genome editing with reduced off-target activity. Nat Chem Biol 14, 311-316 https://doi.org/10.1038/nchembio.2559
- Kim H, Lee WJ, Oh Y et al (2020) Enhancement of target specificity of CRISPR-Cas12a by using a chimeric DNA-RNA guide. Nucleic Acids Res 48, 8601-8616 https://doi.org/10.1093/nar/gkaa605
- Coelho MA, De Braekeleer E, Firth M et al (2020) CRISPR GUARD protects off-target sites from Cas9 nuclease activity using short guide RNAs. Nat Commun 11, 4132
- Fu Y, Sander JD, Reyon D, Cascio VM and Joung JK (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32, 279-284 https://doi.org/10.1038/nbt.2808
- Ryan DE, Taussig D, Steinfeld I et al (2018) Improving CRISPR-Cas specificity with chemical modifications in single-guide RNAs. Nucleic Acids Res 46, 792-803 https://doi.org/10.1093/nar/gkx1199
- Kocak DD, Josephs EA, Bhandarkar V, Adkar SS, Kwon JB and Gersbach CA (2019) Increasing the specificity of CRISPR systems with engineered RNA secondary structures. Nat Biotechnol 37, 657-666 https://doi.org/10.1038/s41587-019-0095-1
- Kim S, Bae T, Hwang J and Kim JS (2017) Rescue of high-specificity Cas9 variants using sgRNAs with matched 5' nucleotides. Genome Biol 18, 218
- Anzalone AV, Randolph PB, Davis JR et al (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149-157 https://doi.org/10.1038/s41586-019-1711-4
- Liu Y, Zhou XH, Huang SH and Wang XL (2022) Prime editing: a search and replace tool with versatile base changes. Yi Chuan 44, 993-1008
- Ahmad N, Awan MJA and Mansoor S (2023) Improving editing efficiency of prime editor in plants. Trends Plant Sci 28, 1-3 https://doi.org/10.1016/j.tplants.2022.09.001
- Chen PJ and Liu DR (2023) Prime editing for precise and highly versatile genome manipulation. Nat Rev Genet 24, 161-177 https://doi.org/10.1038/s41576-022-00541-1
- Davis JR, Banskota S, Levy JM et al (2023) Efficient prime editing in mouse brain, liver and heart with dual AAVs. Nat Biotechnol, doi: 10.1038/s41587-023-01758-z
- Everette KA, Newby GA, Levine RM et al (2023) Ex vivo prime editing of patient haematopoietic stem cells rescues sickle-cell disease phenotypes after engraftment in mice. Nat Biomed Eng 7, 616-628 https://doi.org/10.1038/s41551-023-01026-0
- Li J, Ding J, Zhu J et al (2023) Prime editing-mediated precise knockin of protein tag sequences in the rice genome. Plant Commun 4, 100572
- Qi Y, Zhang Y, Tian S et al (2023) An optimized prime editing system for efficient modification of the pig geome. Sci China Life Sci, doi: 10.1007/s11427-022-2334-y
- Zhang J, Zhang L, Zhang C et al (2023) Developing an efficient and visible prime editing system to restore tobacco 8-hydroxy-copalyl diphosphate gene for labdane diterpene Z-abienol biosynthesis. Sci China Life Sci, doi: 10.1007/s11427-022-2396-x
- Kim DY, Moon SB, Ko JH, Kim YS and Kim D (2020) Unbiased investigation of specificities of prime editing systems in human cells. Nucleic Acids Res 48, 10576-10589 https://doi.org/10.1093/nar/gkaa764
- Kwon J, Kim M, Bae S, Jo A, Kim Y and Lee JK (2022) TAPE-seq is a cell-based method for predicting genome-wide off-target effects of prime editor. Nat Commun 13, 7975
- Liang SQ, Liu P, Ponnienselvan K et al (2023) Genome-wide profiling of prime editor off-target sites in vitro and in vivo using PE-tag. Nat Methods 20, 898-907 https://doi.org/10.1038/s41592-023-01859-2
- Oh Y, Lee WJ, Hur JK et al (2022) Expansion of the prime editing modality with Cas9 from Francisella novicida. Genome Biol 23, 92
- Liu P, Liang SQ, Zheng C et al (2021) Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice. Nat Commun 12, 2121
- Wu WY, Mohanraju P, Liao C et al (2022) The miniature CRISPR-Cas12m effector binds DNA to block transcription. Mol Cell 82, 4487-4502 e4487
- Al-Shayeb B, Skopintsev P, Soczek KM et al (2022) Diverse virus-encoded CRISPR-Cas systems include streamlined genome editors. Cell 185, 4574-4586 e4516
- Chen W, Ma J, Wu Z et al (2023) Cas12n nucleases, early evolutionary intermediates of type V CRISPR, comprise a distinct family of miniature genome editors. Mol Cell 83, 2768-2780 e6
- Huang CJ, Adler BA and Doudna JA (2022) A naturally DNase-free CRISPR-Cas12c enzyme silences gene expression. Mol Cell 82, 2148-2160 e2144
- Xiao R, Wang S, Han R et al (2021) Structural basis of target DNA recognition by CRISPR-Cas12k for RNA-guided DNA transposition. Mol Cell 81, 4457-4466 e4455
- Saito M, Xu P, Faure G et al (2023) Fanzor is a eukaryotic programmable RNA-guided endonuclease. Nature 620, 660-668 https://doi.org/10.1038/s41586-023-06356-2
- Karvelis T, Druteika G, Bigelyte G et al (2021) Transposon-associated TnpB is a programmable RNA-guided DNA endonuclease. Nature 599, 692-696 https://doi.org/10.1038/s41586-021-04058-1
- Altae-Tran H, Kannan S, Demircioglu FE et al (2021) The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases. Science 374, 57-65 https://doi.org/10.1126/science.abj6856