DOI QR코드

DOI QR Code

Recent advances in genome engineering by CRISPR technology

  • Youngsik Lee (Department of Life Science, Chung-Ang University) ;
  • Yeounsun Oh (Department of Life Science, Chung-Ang University) ;
  • Seung Hwan Lee (Department of Life Science, Chung-Ang University)
  • Received : 2023.08.27
  • Accepted : 2023.09.27
  • Published : 2024.01.31

Abstract

Due to the development of CRISPR technology, the era of effective editing of target genes has arrived. However, the off-target problem that occurs when recognizing target DNA due to the inherent nature of CRISPR components remains the biggest task to be overcome in the future. In this review, the principle of inducing such unintended off-target editing is analyzed from the structural aspect of CRISPR, and the methodology that has been developed to reduce off-target editing until now is summarized.

Keywords

Acknowledgement

This research was supported by grants from the National Research Foundation funded by the Korean Ministry of Education, Science and Technology (NRF-2022R1A2C4001609) and the Korean Fund for Regenerative Medicine (KFRM) grant funded by the Korea government (the Ministry of Science and ICT, the Ministry of Health & Welfare) (22A0203L1). This research was also supported by the Chung-Ang University Graduate Research Scholarship in 2023.

References

  1. Barrangou R, Fremaux C, Deveau H et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709-1712 https://doi.org/10.1126/science.1138140
  2. Gasiunas G, Barrangou R, Horvath P and Siksnys V (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109, E2579-E2586 https://doi.org/10.1073/pnas.1208507109
  3. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA and Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821 https://doi.org/10.1126/science.1225829
  4. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 https://doi.org/10.1126/science.1231143
  5. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339, 823-826 https://doi.org/10.1126/science.1232033
  6. Doudna JA and Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096
  7. Gillmore JD, Gane E, Taubel J et al (2021) CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N Engl J Med 385, 493-502 https://doi.org/10.1056/NEJMoa2107454
  8. Frangoul H, Altshuler D, Cappellini MD et al (2021) CRISPR-Cas9 gene editing for sickle cell disease and beta-thalassemia. N Engl J Med 384, 252-260 https://doi.org/10.1056/NEJMoa2031054
  9. Guo C, Ma X, Gao F and Guo Y (2023) Off-target effects in CRISPR/Cas9 gene editing. Front Bioeng Biotechnol 11, 1143157
  10. Zhang XH, Tee LY, Wang XG, Huang QS and Yang SH (2015) Off-target Effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids 4, e264
  11. Fu Y, Foden JA, Khayter C et al (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31, 822-826 https://doi.org/10.1038/nbt.2623
  12. Akcakaya P, Bobbin ML, Guo JA et al (2018) In vivo CRISPR editing with no detectable genome-wide off-target mutations. Nature 561, 416-419 https://doi.org/10.1038/s41586-018-0500-9
  13. Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA and Liu DR (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31, 839-843 https://doi.org/10.1038/nbt.2673
  14. Li D, Zhou H and Zeng X (2019) Battling CRISPR-Cas9 off-target genome editing. Cell Biol Toxicol 35, 403-406 https://doi.org/10.1007/s10565-019-09485-5
  15. Jiang F and Doudna JA (2017) CRISPR-Cas9 Structures and Mechanisms. Annu Rev Biophys 46, 505-529 https://doi.org/10.1146/annurev-biophys-062215-010822
  16. Nishimasu H, Ran FA, Hsu PD et al (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156, 935-949 https://doi.org/10.1016/j.cell.2014.02.001
  17. Pacesa M, Loeff L, Querques I, Muckenfuss LM, Sawicka M and Jinek M (2022) R-loop formation and conformational activation mechanisms of Cas9. Nature 609, 191-196 https://doi.org/10.1038/s41586-022-05114-0
  18. Jiang F, Taylor DW, Chen JS et al (2016) Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science 351, 867-871 https://doi.org/10.1126/science.aad8282
  19. Shmakov S, Smargon A, Scott D et al (2017) Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol 15, 169-182 https://doi.org/10.1038/nrmicro.2016.184
  20. Wu X, Scott DA, Kriz AJ et al (2014) Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol 32, 670-676 https://doi.org/10.1038/nbt.2889
  21. Kuscu C, Arslan S, Singh R, Thorpe J and Adli M (2014) Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol 32, 677-683 https://doi.org/10.1038/nbt.2916
  22. Tong B, Dong H, Cui Y, Jiang P, Jin Z and Zhang D (2020) The versatile type V CRISPR effectors and their application prospects. Front Cell Dev Biol 8, 622103
  23. Yan WX, Hunnewell P, Alfonse LE et al (2019) Functionally diverse type V CRISPR-Cas systems. Science 363, 88-91 https://doi.org/10.1126/science.aav7271
  24. Zetsche B, Gootenberg JS, Abudayyeh OO et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759-771 https://doi.org/10.1016/j.cell.2015.09.038
  25. Safari F, Zare K, Negahdaripour M, Barekati-Mowahed M and Ghasemi Y (2019) CRISPR Cpf1 proteins: structure, function and implications for genome editing. Cell Biosci 9, 36
  26. Stella S, Alcon P and Montoya G (2017) Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage. Nature 546, 559-563 https://doi.org/10.1038/nature22398
  27. Yamano T, Nishimasu H, Zetsche B et al (2016) Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 165, 949-962 https://doi.org/10.1016/j.cell.2016.04.003
  28. Kim D, Kim J, Hur JK, Been KW, Yoon SH and Kim JS (2016) Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat Biotechnol 34, 863-868 https://doi.org/10.1038/nbt.3609
  29. Kleinstiver BP, Tsai SQ, Prew MS et al (2016) Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat Biotechnol 34, 869-874 https://doi.org/10.1038/nbt.3620
  30. Swarts DC, van der Oost J and Jinek M (2017) Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a. Mol Cell 66, 221-233 e224
  31. Liu L, Chen P, Wang M et al (2017) C2c1-sgRNA complex structure reveals RNA-guided DNA cleavage mechanism. Mol Cell 65, 310-322 https://doi.org/10.1016/j.molcel.2016.11.040
  32. Shmakov S, Abudayyeh OO, Makarova KS et al (2015) Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell 60, 385-397 https://doi.org/10.1016/j.molcel.2015.10.008
  33. Yang H, Gao P, Rajashankar KR and Patel DJ (2016) PAM-dependent target DNA recognition and cleavage by C2c1 CRISPR-Cas endonuclease. Cell 167, 1814-1828 e1812
  34. Karvelis T, Bigelyte G, Young JK et al (2020) PAM recognition by miniature CRISPR-Cas12f nucleases triggers programmable double-stranded DNA target cleavage. Nucleic Acids Res 48, 5016-5023 https://doi.org/10.1093/nar/gkaa208
  35. Takeda SN, Nakagawa R, Okazaki S et al (2021) Structure of the miniature type V-F CRISPR-Cas effector enzyme. Mol Cell 81, 558-570 e553
  36. Xiao R, Li Z, Wang S, Han R and Chang L (2021) Structural basis for substrate recognition and cleavage by the dimerization-dependent CRISPR-Cas12f nuclease. Nucleic Acids Res 49, 4120-4128 https://doi.org/10.1093/nar/gkab179
  37. Omura SN, Nakagawa R, Sudfeld C et al (2023) Mechanistic and evolutionary insights into a type V-M CRISPR-Cas effector enzyme. Nat Struct Mol Biol 30, 1172-1182 https://doi.org/10.1038/s41594-023-01042-3
  38. Singh D, Mallon J, Poddar A et al (2018) Real-time observation of DNA target interrogation and product release by the RNA-guided endonuclease CRISPR Cpf1 (Cas12a). Proc Natl Acad Sci U S A 115, 5444-5449 https://doi.org/10.1073/pnas.1718686115
  39. Sternberg SH, Redding S, Jinek M, Greene EC and Doudna JA (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507, 62-67 https://doi.org/10.1038/nature13011
  40. Globyte V, Lee SH, Bae T, Kim JS and Joo C (2019) CRISPR/Cas9 searches for a protospacer adjacent motif by lateral diffusion. EMBO J 38, e99466
  41. Pacesa M, Lin CH, Clery A et al (2022) Structural basis for Cas9 off-target activity. Cell 185, 4067-4081 e4021
  42. Bae S, Park J and Kim JS (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473-1475 https://doi.org/10.1093/bioinformatics/btu048
  43. Xiao A, Cheng Z, Kong L et al (2014) CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics 30, 1180-1182 https://doi.org/10.1093/bioinformatics/btt764
  44. Kang SH, Lee WJ, An JH et al (2020) Prediction-based highly sensitive CRISPR off-target validation using target-specific DNA enrichment. Nat Commun 11, 3596
  45. Tsai SQ, Zheng Z, Nguyen NT et al (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33, 187-197 https://doi.org/10.1038/nbt.3117
  46. Yan WX, Mirzazadeh R, Garnerone S et al (2017) BLISS is a versatile and quantitative method for genome-wide profiling of DNA double-strand breaks. Nat Commun 8, 15058
  47. Crosetto N, Mitra A, Silva MJ et al (2013) Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nat Methods 10, 361-365 https://doi.org/10.1038/nmeth.2408
  48. Cameron P, Fuller CK, Donohoue PD et al (2017) Mapping the genomic landscape of CRISPR-Cas9 cleavage. Nat Methods 14, 600-606 https://doi.org/10.1038/nmeth.4284
  49. Wang X, Wang Y, Wu X et al (2015) Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors. Nat Biotechnol 33, 175-178 https://doi.org/10.1038/nbt.3127
  50. Marinov GK, Kim SH, Bagdatli ST et al (2023) CasKAS: direct profiling of genome-wide dCas9 and Cas9 specificity using ssDNA mapping. Genome Biol 24, 85
  51. Liang SQ, Liu P, Smith JL et al (2022) Genome-wide detection of CRISPR editing in vivo using GUIDE-tag. Nat Commun 13, 437
  52. Frock RL, Hu J, Meyers RM, Ho YJ, Kii E and Alt FW (2015) Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat Biotechnol 33, 179-186 https://doi.org/10.1038/nbt.3101
  53. Wienert B, Wyman SK, Richardson CD et al (2019) Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq. Science 364, 286-289 https://doi.org/10.1126/science.aav9023
  54. Tsai SQ, Nguyen NT, Malagon-Lopez J, Topkar VV, Aryee MJ and Joung JK (2017) CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets. Nat Methods 14, 607-614 https://doi.org/10.1038/nmeth.4278
  55. Kim D, Bae S, Park J et al (2015) Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods 12, 237-243 https://doi.org/10.1038/nmeth.3284
  56. Kwon J, Kim M, Hwang W et al (2023) Extru-seq: a method for predicting genome-wide Cas9 off-target sites with advantages of both cell-based and in vitro approaches. Genome Biol 24, 4
  57. Hu JH, Miller SM, Geurts MH et al (2018) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57-63 https://doi.org/10.1038/nature26155
  58. Nishimasu H, Shi X, Ishiguro S et al (2018) Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 361, 1259-1262 https://doi.org/10.1126/science.aas9129
  59. Kleinstiver BP, Pattanayak V, Prew MS et al (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490-495 https://doi.org/10.1038/nature16526
  60. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX and Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84-88 https://doi.org/10.1126/science.aad5227
  61. Kulcsar PI, Talas A, Huszar K et al (2017) Crossing enhanced and high fidelity SpCas9 nucleases to optimize specificity and cleavage. Genome Biol 18, 190
  62. Casini A, Olivieri M, Petris G et al (2018) A highly specific SpCas9 variant is identified by in vivo screening in yeast. Nat Biotechnol 36, 265-271 https://doi.org/10.1038/nbt.4066
  63. Chen JS, Dagdas YS, Kleinstiver BP et al (2017) Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature 550, 407-410 https://doi.org/10.1038/nature24268
  64. Corsi GI, Qu K, Alkan F, Pan X, Luo Y and Gorodkin J (2022) CRISPR/Cas9 gRNA activity depends on free energy changes and on the target PAM context. Nat Commun 13, 3006
  65. Yin H, Song CQ, Suresh S et al (2018) Partial DNA-guided Cas9 enables genome editing with reduced off-target activity. Nat Chem Biol 14, 311-316 https://doi.org/10.1038/nchembio.2559
  66. Kim H, Lee WJ, Oh Y et al (2020) Enhancement of target specificity of CRISPR-Cas12a by using a chimeric DNA-RNA guide. Nucleic Acids Res 48, 8601-8616 https://doi.org/10.1093/nar/gkaa605
  67. Coelho MA, De Braekeleer E, Firth M et al (2020) CRISPR GUARD protects off-target sites from Cas9 nuclease activity using short guide RNAs. Nat Commun 11, 4132
  68. Fu Y, Sander JD, Reyon D, Cascio VM and Joung JK (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32, 279-284 https://doi.org/10.1038/nbt.2808
  69. Ryan DE, Taussig D, Steinfeld I et al (2018) Improving CRISPR-Cas specificity with chemical modifications in single-guide RNAs. Nucleic Acids Res 46, 792-803 https://doi.org/10.1093/nar/gkx1199
  70. Kocak DD, Josephs EA, Bhandarkar V, Adkar SS, Kwon JB and Gersbach CA (2019) Increasing the specificity of CRISPR systems with engineered RNA secondary structures. Nat Biotechnol 37, 657-666 https://doi.org/10.1038/s41587-019-0095-1
  71. Kim S, Bae T, Hwang J and Kim JS (2017) Rescue of high-specificity Cas9 variants using sgRNAs with matched 5' nucleotides. Genome Biol 18, 218
  72. Anzalone AV, Randolph PB, Davis JR et al (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149-157 https://doi.org/10.1038/s41586-019-1711-4
  73. Liu Y, Zhou XH, Huang SH and Wang XL (2022) Prime editing: a search and replace tool with versatile base changes. Yi Chuan 44, 993-1008
  74. Ahmad N, Awan MJA and Mansoor S (2023) Improving editing efficiency of prime editor in plants. Trends Plant Sci 28, 1-3 https://doi.org/10.1016/j.tplants.2022.09.001
  75. Chen PJ and Liu DR (2023) Prime editing for precise and highly versatile genome manipulation. Nat Rev Genet 24, 161-177 https://doi.org/10.1038/s41576-022-00541-1
  76. Davis JR, Banskota S, Levy JM et al (2023) Efficient prime editing in mouse brain, liver and heart with dual AAVs. Nat Biotechnol, doi: 10.1038/s41587-023-01758-z
  77. Everette KA, Newby GA, Levine RM et al (2023) Ex vivo prime editing of patient haematopoietic stem cells rescues sickle-cell disease phenotypes after engraftment in mice. Nat Biomed Eng 7, 616-628 https://doi.org/10.1038/s41551-023-01026-0
  78. Li J, Ding J, Zhu J et al (2023) Prime editing-mediated precise knockin of protein tag sequences in the rice genome. Plant Commun 4, 100572
  79. Qi Y, Zhang Y, Tian S et al (2023) An optimized prime editing system for efficient modification of the pig geome. Sci China Life Sci, doi: 10.1007/s11427-022-2334-y
  80. Zhang J, Zhang L, Zhang C et al (2023) Developing an efficient and visible prime editing system to restore tobacco 8-hydroxy-copalyl diphosphate gene for labdane diterpene Z-abienol biosynthesis. Sci China Life Sci, doi: 10.1007/s11427-022-2396-x
  81. Kim DY, Moon SB, Ko JH, Kim YS and Kim D (2020) Unbiased investigation of specificities of prime editing systems in human cells. Nucleic Acids Res 48, 10576-10589 https://doi.org/10.1093/nar/gkaa764
  82. Kwon J, Kim M, Bae S, Jo A, Kim Y and Lee JK (2022) TAPE-seq is a cell-based method for predicting genome-wide off-target effects of prime editor. Nat Commun 13, 7975
  83. Liang SQ, Liu P, Ponnienselvan K et al (2023) Genome-wide profiling of prime editor off-target sites in vitro and in vivo using PE-tag. Nat Methods 20, 898-907 https://doi.org/10.1038/s41592-023-01859-2
  84. Oh Y, Lee WJ, Hur JK et al (2022) Expansion of the prime editing modality with Cas9 from Francisella novicida. Genome Biol 23, 92
  85. Liu P, Liang SQ, Zheng C et al (2021) Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice. Nat Commun 12, 2121
  86. Wu WY, Mohanraju P, Liao C et al (2022) The miniature CRISPR-Cas12m effector binds DNA to block transcription. Mol Cell 82, 4487-4502 e4487
  87. Al-Shayeb B, Skopintsev P, Soczek KM et al (2022) Diverse virus-encoded CRISPR-Cas systems include streamlined genome editors. Cell 185, 4574-4586 e4516
  88. Chen W, Ma J, Wu Z et al (2023) Cas12n nucleases, early evolutionary intermediates of type V CRISPR, comprise a distinct family of miniature genome editors. Mol Cell 83, 2768-2780 e6
  89. Huang CJ, Adler BA and Doudna JA (2022) A naturally DNase-free CRISPR-Cas12c enzyme silences gene expression. Mol Cell 82, 2148-2160 e2144
  90. Xiao R, Wang S, Han R et al (2021) Structural basis of target DNA recognition by CRISPR-Cas12k for RNA-guided DNA transposition. Mol Cell 81, 4457-4466 e4455
  91. Saito M, Xu P, Faure G et al (2023) Fanzor is a eukaryotic programmable RNA-guided endonuclease. Nature 620, 660-668 https://doi.org/10.1038/s41586-023-06356-2
  92. Karvelis T, Druteika G, Bigelyte G et al (2021) Transposon-associated TnpB is a programmable RNA-guided DNA endonuclease. Nature 599, 692-696 https://doi.org/10.1038/s41586-021-04058-1
  93. Altae-Tran H, Kannan S, Demircioglu FE et al (2021) The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases. Science 374, 57-65 https://doi.org/10.1126/science.abj6856