DOI QR코드

DOI QR Code

마그네슘 합금의 고온 평면변형 압축에서 Pb 첨가에 따른 미세조직 및 집합조직 변화

Effects of Pb Aaddition on Microstructur and Texture in High Temperature Plane Strain Compression of Magnesium Alloys

  • 지예빈 (부경대학교 마린융합디자인공학과) ;
  • 윤지민 (부경대학교 마린융합디자인공학과) ;
  • 김권후 (부경대학교 공과대학 금속공학과)
  • Yebeen Ji (Department of Marine design Convergence Engineering, Pukyong National University) ;
  • Jimin Yun (Department of Marine design Convergence Engineering, Pukyong National University) ;
  • Kwonhoo Kim (Department of Metallurgical Engineering, Pukyong National University)
  • 투고 : 2024.01.05
  • 심사 : 2024.01.23
  • 발행 : 2024.01.30

초록

As global warming accelerates, the transportation industry is increasing the use of lightweight materials with the goal of reducing carbon emissions. Magnesium is a suitable material, but its poor formability limits its use, so research is needed to improve it. Rare-earth elements are known to effectively control texture development, but their high cost limits commercial. In this study, changes in microstructure and texture were investigated by adding Pb, which is expected to have a similar effect as rare-earth elements. The material used is Mg-15wt%Pb alloy. Initial specimens were obtained by rolling at 773 K to a rolling reduction of 25% and heat treatment. Afterwards, plane strain compression was performed at 723 K with a strain rate of 5×10-2s-1 and a strain of -0.4 to -1.0. As a result, recrystallized grains were formed within the microstructure, and the main component of the texture changed from (0,0) to (30,26). The maximum axial density was initially 10.01, but decreased to 4.23 after compression.

키워드

과제정보

본 논문은 2023년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다(2023RIS-007).

참고문헌

  1. Park, J.-Y., et al.: J. Ocean Eng. Technol., 37(2) (2023) 58-67. https://doi.org/10.26748/KSOE.2023.001
  2. Kim, J., et al.: Mater. Trans., 54(2) (2013) 192-198. https://doi.org/10.2320/matertrans.H-M2012832
  3. Stanford, N.: Mater. Sci. Eng., A 527(10) (2010) 2669-2677. https://doi.org/10.1016/j.msea.2009.12.036
  4. Stanford, N., et al.: Metall. Mater. Trans., A 41(3) (2010) 734-743. https://doi.org/10.1007/s11661-009-0107-8
  5. Kim, J., et al.: Mater. Trans., 53(11) (2012) 1870-1875. https://doi.org/10.2320/matertrans.L-M2012828
  6. Kim, D. W., et al.: Metall. Mater. Trans., A 44(7) (2013) 2950-2961. https://doi.org/10.1007/s11661-013-1674-2
  7. Stanford, N.: Mater. Sci. Eng., A 528(1) (2010) 314-322. https://doi.org/10.1016/j.msea.2010.08.097
  8. Hadorn, J. P., et al.: Metall. Mater. Trans., A 43(4) (2012) 1347-1362. https://doi.org/10.1007/s11661-011-0923-5
  9. 김기범: Al2Ca 석출상이 AZ61 마그네슘 합금의 고온 변형 중 집합조직 형성 거동에 미치는 영향, 부경대학교 (2022).
  10. Wang, L., et al.: J. Electrochem. Soc., 164(2) (2017) A438.
  11. Wang, N., et al.: J. Power Sources, 436 (2019) 226855.
  12. Cottam, R., et al.: Mater. Sci. Eng., A 485(1) (2008) 375-382. https://doi.org/10.1016/j.msea.2007.08.016
  13. Srinivasan, A., et al.: Mater. Sci. Eng., A 452-453 (2007) 87-92. https://doi.org/10.1016/j.msea.2006.10.119