DOI QR코드

DOI QR Code

Identification of the mechanism for dehalorespiration of monofluoroacetate in the phylum Synergistota

  • Lex E. X. Leong (CSIRO Agriculture and Food) ;
  • Stuart E. Denman (CSIRO Agriculture and Food) ;
  • Seungha Kang (CSIRO Agriculture and Food) ;
  • Stanislas Mondot (Micalis Institute, INRA, AgroParisTech, University Paris-Saclay) ;
  • Philip Hugenholtz (Australian Centre for Ecogenomics, School of Chemistry and Molecular Bioscience, the University of Queensland) ;
  • Chris S. McSweeney (CSIRO Agriculture and Food)
  • Received : 2023.09.07
  • Accepted : 2023.12.26
  • Published : 2024.02.01

Abstract

Objective: Monofluoroacetate (MFA) is a potent toxin that blocks ATP production via the Krebs cycle and causes acute toxicity in ruminants consuming MFA-containing plants. The rumen bacterium, Cloacibacillus porcorum strain MFA1 belongs to the phylum Synergistota and can produce fluoride and acetate from MFA as the end-products of dehalorespiration. The aim of this study was to identify the genomic basis for the metabolism of MFA by this bacterium. Methods: A draft genome sequence for C. porcorum strain MFA1 was assembled and quantitative transcriptomic analysis was performed thus highlighting a candidate operon encoding four proteins that are responsible for the carbon-fluorine bond cleavage. Comparative genome analysis of this operon was undertaken with three other species of closely related Synergistota bacteria. Results: Two of the genes in this operon are related to the substrate-binding components of the glycine reductase protein B (GrdB) complex. Glycine shares a similar structure to MFA suggesting a role for these proteins in binding MFA. The remaining two genes in the operon, an antiporter family protein and an oxidoreductase belonging to the radical S-adenosyl methionine superfamily, are hypothesised to transport and activate the GrdB-like protein respectively. Similar operons were identified in a small number of other Synergistota bacteria including type strains of Cloacibacillus porcorum, C. evryensis, and Pyramidobacter piscolens, suggesting lateral transfer of the operon as these genera belong to separate families. We confirmed that all three species can degrade MFA, however, substrate degradation in P. piscolens was notably reduced compared to Cloacibacillus isolates possibly reflecting the loss of the oxidoreductase and antiporter in the P. piscolens operon. Conclusion: Identification of this unusual anaerobic fluoroacetate metabolism extends the known substrates for dehalorespiration and indicates the potential for substrate plasticity in amino acid-reducing enzymes to include xenobiotics.

Keywords

Acknowledgement

This work was supported by Meat and Livestock Australia (project number: B.AHE.0248).

References

  1. Giesy JP, Kannan K. Peer Reviewed: Perfluorochemical surfactants in the environment. Environ Sci Technol 2002;36:146A-52A. https://doi.org/10.1021/es022253t 
  2. Lauble H, Kennedy MC, Emptage MH, Beinert H, Stout CD. The reaction of fluorocitrate with aconitase and the crystal structure of the enzyme-inhibitorcomplex. Proc Natl Acad Sci USA 1996;93:13699-703. https://doi.org/10.1073/pnas.93.24.13699 
  3. Wang G, Li R, Li S, Jiang J. A novel hydrolytic dehalogenase for the chlorinated aromatic compound chlorothalonil. J Bacteriol 2010;192:2737-45. https://doi.org/10.1128/jb.01547-09 
  4. Fung JM, Morris RM, Adrian L, Zinder SH. Expression of reductive dehalogenase genes in Dehalococcoides ethenogens strain 195 growing on tetrachloroethene, trichloroethene, or 2,3-dichlorophenol. Appl Environ Microbiol 2007;73:4439-45. https://doi.org/10.1128/AEM.00215-07 
  5. Furukawa K, Suyama A, Tsuboi Y, Futagami T, Goto M. Biochemical and molecular characterization of a tetrachloroethene dechlorinating Desulfitobacterium sp. strain Y51: a review. J Ind Microbiol Biotechnol 2005;32:534-41. https://doi.org/10.1007/s10295-005-0252-z 
  6. Villemur R, Saucier M, Gauthier A, Beaudet R. Occurrence of several genes encoding putative reductive dehalogenases in Desulfitobacterium hafniense/frappieri and Dehalococcoides ethenogenes. Can J Microbiol 2002;48:697-706. https://doi.org/10.1139/w02-057 
  7. Davis CK, Webb RI, Sly LI, Denman SE, McSweeney CS. Isolation and survey of novel fluoroacetate-degrading bacteria belonging to the phylum Synergistetes. FEMS Microbiol Ecol 2012;80:671-84. https://doi.org/10.1111/j.1574-6941.2012.01338.x 
  8. Ichiyama S, Kurihara T, Kogure Y, et al. Reactivity of asparagine residue at the active site of the D105N mutant of fluoroacetate dehalogenase from Moraxella sp B. Biochim Biophys Acta Proteins Proteom 2004;1698:27-36. https://doi.org/10.1016/j.bbapap.2003.10.002 
  9. Kurihara T, Yamauchi T, Ichiyama S, Takahata H, Esaki N. Purification, characterization, and gene cloning of a novel fluoroacetate dehalogenase from Burkholderia sp. FA1. J Mol Catal B-Enzym 2003;23:347-55. https://doi.org/10.1016/S1381-1177(03)00098-5 
  10. Leong LEX, Denman SE, Hugenholtz P, McSweeney CS. Amino acid and peptide utilization profiles of the fluoroacetate-degrading bacterium Synergistetes strain MFA1 under varying conditions. Microb Ecol 2016;71:494-504. https://doi.org/10.1007/s00248-015-0641-4 
  11. Markowitz VM, Chen IA, Palaniappan K, et al. IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res 2012;40:D115-22. https://doi.org/10.1093/nar/gkr1044 
  12. Lomsadze A, Ter-Hovhannisyan V, Chernoff YO, Borodovsky M. Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res 2005;33:6494-506. https://doi.org/10.1093/nar/gki937 
  13. Thompson JD, Higgins DG, Gibson TJ. CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673-80. https://doi.org/10.1093/nar/22.22.4673 
  14. Bairoch A, Apweiler R, Wu CH, et al. The universal protein resource (UniProt). Nucleic Acids Res. 2005;33:D154-D9. https://doi.org/10.1093/nar/gki070 
  15. Zhang Y, Gladyshev VN. An algorithm for identification of bacterial selenocysteine insertion sequence elements and selenoprotein genes. Bioinformatics 2005;21:2580-9. https://doi.org/10.1093/bioinformatics/bti400 
  16. Hofacker IL. Vienna RNA secondary structure server. Nucleic Acids Res 2003;31:3429-31. https://doi.org/10.1093/nar/gkg599 
  17. Zuker M, Stiegler P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res 1981;9:133-48. https://doi.org/10.1093/nar/9.1.133 
  18. Krogh A, Larsson B, von Heijne G, Sonnhammer ELL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001;305:567-80. https://doi.org/10.1006/jmbi.2000.4315 
  19. de Wet SC, Denman SE, Sly L, McSweeney CS. An improved method for RNA extraction from carcass samples for detection of viable Escherichia coli O157:H7 by reverse-transcriptase polymerase chain reaction. Lett Appl Microbiol 2008;47:399-404. https://doi.org/10.1111/j.1472-765X.2008.02462.x 
  20. Liu WT, Guo H, Wu JH. Effects of target length on the hybridization efficiency and specificity of rRNA-based oligonucleotide microarrays. Appl Environ Microbiol 2007;73:73-82. https://doi.org/10.1128/AEM.01468-06 
  21. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010;26:589-95. https://doi.org/10.1093/bioinformatics/btp698 
  22. Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map (SAM) format and SAMtools. Bioinformatics 2009;25:2078-9. https://doi.org/10.1093/bioinformatics/btp352 
  23. Fu Q, Ruegger P, Bent E, Chrobak M, Borneman J. PRISE (PRImer SElector): software for designing sequence-selective PCR primers. J Microbiol Methods 2008;72:263-7. https://doi.org/10.1016/j.mimet.2007.12.004 
  24. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2[-Delta Delta C(t)] method. Methods 2001;25:402-8. https://doi.org/10.1006/meth.2001.1262 
  25. Hugenholtz P, Hooper SD, Kyrpides NC. Focus: Synergistetes. Environ Microbiol 2009;11:1327-9. https://doi.org/10.1111/j.1462-2920.2009.01949.x 
  26. Anantharam V, Allison MJ, Maloney PC. Oxalate:formate exchange. The basis for energy coupling in Oxalobacter. J Biol Chem 1989;264:7244-50. https://doi.org/10.1016/S0021-9258(18)83227-6 
  27. Andreesen JR. Glycine reductase mechanism. Curr Opin Chem Biol 2004;8:454-61. https://doi.org/10.1016/j.cbpa.2004.08.002 
  28. Meyer M, Granderath K, Andreesen JR. Purification and characterization of protein PB of betaine reductase and its relationship to the corresponding proteins glycine reductase and sarcosine reductase from Eubacterium acidaminophilum. Eur J Biochem 1995;234:184-91. https://doi.org/10.1111/j.1432-1033.1995.184_c.x 
  29. Bednarski B, Andreesen JR, Pich A. In vitro processing of the proproteins GrdE of protein B of glycine reductase and PrdA of D-proline reductase from Clostridium sticklandii: formation of a pyruvoyl group from a cysteine residue. Eur J Biochem 2001;268:3538-44. https://doi.org/10.1046/j.1432-1327.2001.02257.x 
  30. Benjdia A, Subramanian S, Leprince J, Vaudry H, Johnson MK, Berteau O. Anaerobic sulfatase-maturating enzymes, first dual substrate radical s-adenosylmethionine enzymes. J Biol Chem 2008;283:17815-26. https://doi.org/10.1074/jbc.M710074200 
  31. Szameit C, Miech C, Balleininger M, Schmidt B, von Figura K, Dierks T. The iron sulfur protein AtsB is required for posttranslational formation of formylglycine in the Klebsiella sulfatase. J Biol Chem 1999;274:15375-81. https://doi.org/10.1074/jbc.274.22.15375 
  32. Andreesen JR. Glycine metabolism in anaerobes. Antonie van Leeuwenhoek 1994;66:223-37. https://doi.org/10.1007/BF00871641 
  33. Lim HN, Lee Y, Hussein R. Fundamental relationship between operon organization and gene expression. Proc Natl Acad Sci USA 2011;108:10626-31. https://doi.org/10.1073/pnas.1105692108 
  34. Serres MH, Kerr ARW, McCormack TJ, Riley M. Evolution by leaps: gene duplication in bacteria. Biol Direct 2009;4:46. https://doi.org/10.1186/1745-6150-4-46 
  35. Bratlie MS, Johansen J, Sherman BT, et al. Gene duplications in prokaryotes can be associated with environmental adaptation. BMC Genomics 2010;11:588. https://doi.org/10.1186/1471-2164-11-588 
  36. Lynch M, Conery JS. The evolutionary fate and consequences of duplicate genes. Science 2000;290:1151-5. https://doi.org/10.1126/science.290.5494.1151