DOI QR코드

DOI QR Code

Translational gut microbiome research for strategies to improve beef cattle production sustainability and meat quality

  • Yasushi Mizoguchi (School of Agriculture, Meiji University) ;
  • Le Luo Guan (Department of Agricultural, Food and Nutritional Science, University of Alberta)
  • 투고 : 2023.09.26
  • 심사 : 2023.12.12
  • 발행 : 2024.02.01

초록

Advanced and innovative breeding and management of meat-producing animals are needed to address the global food security and sustainability challenges. Beef production is an important industry for securing animal protein resources in the world and meat quality significantly contributes to the economic values and human needs. Improvement of cattle feed efficiency has become an urgent task as it can lower the environmental burden of methane gas emissions and the reduce the consumption of human edible cereal grains. Cattle depend on their symbiotic microbiome and its activity in the rumen and gut to maintain growth and health. Recent developments in high-throughput omics analysis (metagenome, metatranscriptome, metabolome, metaproteome and so on) have made it possible to comprehensively analyze microbiome, hosts and their interactions and to define their roles in affecting cattle biology. In this review, we focus on the relationships among gut microbiome and beef meat quality, feed efficiency, methane emission as well as host genetics in beef cattle, aiming to determine the current knowledge gaps for the development of the strategies to improve the sustainability of beef production.

키워드

과제정보

The authors were supported by overseas research grants from Meiji university, Alberta Funding consortium (RDAR 2018F095R, RDAR/AM021F041R, SCA2019-115), Beef Cattle Research Council (FDE.18.21C) and NSERC Discovery grant.

참고문헌

  1. United Nations. Do you know all 17 SDGs? [cited 2022 Oct 14]. Available from: https://sdgs.un.org/goals
  2. Food and Agriculture Organization of the United Nations. FAOSTAT; 2021 [cited 2023 Mar 6]. Available from: https://www.fao.org/faostat/en/#home
  3. Food and Agriculture Organization of the United Nations. Food Outlook (ISSN 0251-1959); 2022 [cited 2023 Mar 6]. https://reliefweb.int/report/world/food-outlook-biannual-report-global-food-markets-november-2022
  4. Farmer LJ, Farrell DT. Review: Beef-eating quality: a European journey. Animal 2018;12:2424-33. https://doi.org/10.1017/S1751731118001672
  5. Wen C, Yan W, Sun C, et al. The gut microbiota is largely independent of host genetics in regulating fat deposition in chickens. ISME J 2019;13:1422-36. https://doi.org/10.1038/s41396-019-0367-2
  6. Zhang Y, Liu Y, Li J, et al. Dietary corn-resistant starch suppresses broiler abdominal fat deposition associated with the reduced cecal Firmicutes. Poult Sci 2020;99:5827-37. https://doi.org/10.1016/j.psj.2020.07.042
  7. Wang Y, Zhou P, Zhou X, et al. Effect of host genetics and gut microbiome on fat deposition traits in pigs. Front Microbiol 2022;13:925200. https://doi.org/10.3389/fmicb.2022.925200
  8. Xie C, Teng J, Wang X, et al. Multi-omics analysis reveals gut microbiota-induced intramuscular fat deposition via regulating expression of lipogenesis-associated genes. Anim Nutr 2022;9:84-99. https://doi.org/10.1016/j.aninu.2021.10.010
  9. Li F, Li C, Chen Y, et al. Host genetics influence the rumen microbiota and heritable rumen microbial features associate with feed efficiency in cattle. Microbiome 2019;7:92. https://doi.org/10.1186/s40168-019-0699-1
  10. Zheng Y, Chen J, Wang X, et al. Metagenomic and transcriptomic analyses reveal the differences and associations between the gut microbiome and muscular genes in Angus and Chinese Simmental cattle. Front Microbiol 2022;13:815915. https://doi.org/10.3389/fmicb.2022.815915
  11. Neves ALA, ChenY, Le Cao KA, et al. Taxonomic and functional assessment using metatranscriptomics reveals the effect of Angus cattle on rumen microbial signatures. Animal 2020;14:731-44. https://doi.org/10.1017/S1751731119002453
  12. Cantalapiedra-Hijar G, Abo-Ismail M, Carstens GE, et al. Review: Biological determinants of between-animal variation in feed efficiency of growing beef cattle. Animal 2018;12:s321-35. https://doi.org/10.1017/S1751731118001489
  13. Cardinale S, Kadarmideen HN. Host genome-metagenome analyses using combinatorial network methods reveal key metagenomic and host genetic features for methane emission and feed efficiency in cattle. Front Genet 2022;13:795717. https://doi.org/10.3389/fgene.2022.795717
  14. Abbas W, Howard JT, Paz HA, et al. Influence of host genetics in shaping the rumen bacterial community in beef cattle. Sci Rep 2020;10:15101. https://doi.org/10.1038/s41598-020-72011-9
  15. van Gylswyk NO. Succiniclasticum ruminis gen. nov., sp. Nov., a ruminal bacterium converting succinate to propionate as the sole energy-yielding mechanism. Int J Syst Bacteriol 1995;45:297-300. https://doi.org/10.1099/00207713-45-2-297
  16. Wu CW, Spike T, Klingeman DM, Rodriguez M, Bremer VR, Brown SD. Generation and characterization of acid tolerant Fibrobacter succinogenes S85. Sci Rep 2017;7:2277. https://doi.org/10.1038/s41598-017-02628-w
  17. Zang XW, Sun HZ, Xue MY, et al. Heritable and nonheritable rumen bacteria are associated with different characters of lactation performance of dairy cows. mSystems 2022;7:e00422-22. https://doi.org/10.1128/msystems.00422-22
  18. Fan P, Nelson CD, Driver JD, Elzo MA, Peñagaricano F, Jeong KC. Host genetics exerts lifelong effects upon hindgut microbiota and its association with bovine growth and immunity. ISME J 2021;15:2306-21. https://doi.org/10.1038/s41396-021-00925-x
  19. Fun P, Bian B, Teng L, et al. Host genetic effects upon the early gut microbiota in a bovine model with graduated spectrum of genetic variation. ISME J 2020;14:302-17. https://doi.org/10.1038/s41396-019-0529-2
  20. Sasazaki S. Development of DNA markers for improvement of meat quality in a Japanese Black cattle population in Hyogo Prefecture. Anim Sci J 2021;92:e13663. https://doi.org/10.1111/asj.13663
  21. O'Quinn TG, Legako JF, Brooks JC, Miller MF. Evaluation of the contribution of tenderness, juiciness, and flavor to the overall consumer beef eating experience. Transl Anim Sci 2018;2:26-36. https://doi.org/10.1093/tas/txx008
  22. Du M, Huang Y, Das AK, et al. Meat science and muscle biology symposium: Manipulating mesenchymal progenitor cell differentiation to optimize performance and carcass value of beef cattle. J Anim Sci 2013;91:1419-27. https://doi.org/10.2527/jas.2012-5670
  23. Zhang J, Li Q, Nogoy KMC, et al. Effect of palmitoleic acid on the differentiation of bovine skeletal muscle satellite cells. J Anim Sci Technol 2021;63:919-33. https://doi.org/10.5187/jast.2021.e78
  24. Zhang JF, Choi SH, Li Q, et al. Overexpression of DGAT2 stimulates lipid droplet formation and triacylglycerol accumulation in bovine satellite cells. Animals (Basel) 2022;12:1847. https://doi.org/10.3390/ani12141847
  25. Nguyen DV, Nguyen OC, Malau-Aduli AEO. Main regulatory factors of marbling level in beef cattle. Vet Anim Sci 2021;14:100219. https://doi.org/10.1016/j.vas.2021.100219
  26. Kim M, Park T, Jeong JY, Beak Y, Lee HJ. Association between rumen microbiota and marbling score in Korean native beef cattle. Animals (Basel) 2020;10:712. https://doi.org/10.3390/ani10040712
  27. Krause TR, Lourenco JM, Welch CB, Rothrock MJ, Callaway TR, Pringle TD. The relationship between the rumen microbiome and carcass merit in Angus steers. J Anim Sci 2020;98:skaa287. https://doi.org/10.1093/jas/skaa287
  28. Li L, Sun X, Luo J, et al. Effect of herbal tea residue on growth performance, meat quality, muscle metabolome, and rumen microbiota characteristics in finishing steers. Front Microbiol 2022;12:821293. https://doi.org/10.3389/fmicb.2021.821293
  29. Du S, You S, Sun L, Wang X, Jia Y, Zhou Y. Effects of replacing alfalfa hay with native grass hay in pelleted total mixed ration on physicochemical parameters, fatty acid profile, and rumen microbiota in lamb. Front Microbiol 2022;13:861025. https://doi.org/10.3389/fmicb.2022.861025
  30. Wang H, He Y, Li H, et al. Rumen fermentation, intramuscular fat fatty acid profiles and related rumen bacterial populations of Holstein bulls fed diets with different energy levels. Appl Microbiol Biotechnol 2019;103:4931-42. https://doi.org/10.1007/s00253-019-09839-3
  31. Zhang X, Han L, Gui L, et al. Metabolome and microbiome analysis revealed the effect mechanism of different feeding modes on the meat quality of Black Tibetan sheep. Front Microbiol 2023;13:1076675. https://doi.org/10.3389/fmicb.2022.1076675
  32. Li Z, Cui R, Wang YB, et al. Specific gastrointestinal microbiota profiles in Chinese Tan sheep are associated with lauric acid content in muscle. BMC Microbiol 2023;23:331. https://doi.org/10.1186/s12866-023-03079-2
  33. Zhang Z, Yang L, He Y, Luo X, Zhao S, Jia X. Composition of fecal microbiota in grazing and feedlot Angus beef cattle. Animals (Basel) 2021;11:3167. https://doi.org/10.3390/ani11113167
  34. Chen Z, Sun Y, Chen L, et al. Differences in meat quality between Angus cattle and Xinjiang brown cattle in association with gut microbiota and its lipid metabolism. Front Microbiol 2022;13:988984. https://doi.org/10.3389/fmicb.2022.988984
  35. Fan P, Nelson CD, Driver JD, Elzo MA, Jeong KC. Animal breed composition is associated with the hindgut microbiota structure and β-lactam resistance in the multibreed AngusBrahman herd. Front Microbiol 2019;10:1846. https://doi.org/10.3389/fmicb.2019.01846
  36. O'Hara E, Neves ALA, Song Y, Guan LL. The role of the gut microbiome in cattle production and health: driver or passenger? Annu Rev Anim Biosci 2020;8:199-220. https://doi.org/10.1146/annurev-animal-021419-083952
  37. Whon TW, Kim HS, Shin NR, et al. Male castration increases adiposity via small intestinal microbial alterations. EMBO Rep 2021;22:e50663. https://doi.org/10.15252/embr.202050663
  38. Jang C, Oh SF, Wada S, et al. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Nat Med 2016;22:421-6. https://doi.org/10.1038/nm.4057
  39. Fassah DM, Jeong JY, Baik M. Hepatic transcriptional changes in critical genes for gluconeogenesis following castration of bulls. Asian-Australas J Anim Sci 2018;31:537-47. https://doi.org/10.5713/ajas.17.0875
  40. Wen T, Mao C, Gao L. Analysis of the gut microbiota composition of myostatin mutant cattle prepared using CRISPR/Cas9. PLoS One 2022;17:e0264849. https://doi.org/10.1371/journal.pone.0264849
  41. Du C, Zhou X, Zhang K, et al. Inactivation of the MSTN gene expression changes the composition and function of the gut microbiome in sheep. BMC Microbiol 2022;22:273. https://doi.org/10.1186/s12866-022-02687-8
  42. Li J, Wang Y, Mukiibi R, Karisa B, Plastow GS, Li C. Integrative analyses of genomic and metabolomic data reveal genetic mechanisms associated with carcass merit traits in beef cattle. Sci Rep 2022;12:3389. https://doi.org/10.1038/s41598-022-06567-z
  43. Zhang X, Han L, Hou S, et al. Metabolomics approach reveals high energy diet improves the quality and enhances the flavor of black Tibetan sheep meat by altering the composition of rumen microbiota. Front Nutr 2022;9:915558. https://doi.org/10.3389/fnut.2022.915558
  44. Ueda S, Iwamoto E, Kato Y, Shinohara M, Shirai Y, Yamanoue M. Comparative metabolomics of Japanese Black cattle beef and other meats using gas chromatography-mass spectrometry. Biosci Biotechnol Biochem 2019;83:137-47. https://doi.org/10.1080/09168451.2018.1528139
  45. Chen D, Su M, Zhu H, et al. Using untargeted LC-MS metabolomics to identify the association of biomarkers in cattle feces with marbling standard longissimus lumborum. Animals (Basel) 2022;12:2243. https://doi.org/10.3390/ani12172243
  46. Yamada T, Kamiya M, Higuchi M. Metabolomic analysis of plasma and intramuscular adipose tissue between Wagyu and Holstein cattle. J Vet Med Sci 2022;84:186-92. https://doi.org/10.1292/jvms.21-0562
  47. Sun F, Piao M, Zhang X, et al. Multi-omics analysis of transcriptomic and metabolomics profiles reveal the molecular regulatory network of marbling in early castrated Holstein steers. Animals (Basel) 2022;12:3398. https://doi.org/10.3390/ani12233398
  48. Smith SB, Crouse JD. Relative contributions of acetate, lactate and glucose to lipogenesis in bovine intramuscular and subcutaneous adipose tissue. J Nutr 1984;114:792-800. https://doi.org/10.1093/jn/114.4.792
  49. Ladeira MM, Schoonmaker JP, Gionbelli MP, et al. Nutrigenomics and beef quality: a review about lipogenesis. Int J Mol Sci 2016;17:918. https://doi.org/10.3390/ijms17060918
  50. Connolly S, Dona A, Wilkinson-White L, Hamblin D, D'Occhio M, González LA. Relationship of the blood metabolome to subsequent carcass traits at slaughter in feedlot Wagyu crossbred steers. Sci Rep 2019;9:15139. https://doi.org/10.1038/s41598-019-51655-2
  51. Chung KY, Lunt DK, Kawachi H, Yano H, Smith SB. Lipogenesis and stearoyl-CoA desaturase gene expression and enzyme activity in adipose tissue of short- and long-fed Angus and Wagyu steers fed corn- or hay-based diets. J Anim Sci 2007;85:380-7. https://doi.org/10.2527/jas.2006-087
  52. Kim M, Masaki, T, Ikuta K, et al. Changes in the liver transcriptome and physiological parameters of Japanese Black steers during the fattening period. Sci Rep 2022;12:4029. https://doi.org/10.1038/s41598-022-08057-8
  53. Cui Y, Liu H, Gao Z, et al. Whole-plant corn silage improves rumen fermentation and growth performance of beef cattle by altering rumen microbiota. Appl Microbiol Biotechnol 2022;106:4187-98. https://doi.org/10.1007/s00253-022-11956-5
  54. Connolly S, Dona A, Hamblin D, D'Occhio MJ, Gonzalez LA. Changes in the blood metabolome of Wagyu crossbred steers with time in the feedlot and relationships with marbling. Sci Rep 2020;10:18987. https://doi.org/10.1038/s41598-020-76101-6
  55. Liu J, Bai Y, Liu F, et al. Rumen microbial predictors for shortchain fatty acid levels and the grass-fed regimen in Angus cattle. Animals (Basal) 2022;12:2995. https://doi.org/10.3390/ani12212995
  56. Pinkinpaugh WJ, Neville BW, Moore RL, Caton JS. Impacts of added roughage on growth performance, digestibility, ruminal fermentation, and ruminal pH of feedlot steers fed wheat-based feedlot diets containing 30% modified distillers grains with solubles. Transl Anim Sci 2022;6:txac051. https://doi.org/10.1093/tas/txac051
  57. Smith SB, Blackmon TL, Sawyer JE, et al. Glucose and acetate metabolism in bovine intramuscular and subcutaneous adipose tissues from steers infused with glucose, propionate, or acetate. J Anim Sci 2018;96:921-9. https://doi.org/10.1093/jas/sky017
  58. Koba K, Yanagita T. Health benefits of conjugated linoleic acid (CLA). Obes Res Clin Pract 2014;8:e525-32. https://doi.org/10.1016/j.orcp.2013.10.001
  59. Sobczuk-Szul M, Mochol M, Nogalski Z, Pogorzelska-Przybylek P. Fatty acid profile as affected by fat depot and the sex category of Polish Holstein-Friesian × Limousin fattening cattle fed silage ad libitum. Anim Sci J 2021;92:e13516. https://doi.org/10.1111/asj.13516
  60. Sobczuk-Szul M, Mochol M, Nogalski Z, Pogorzelska-Przybylek P, Momot M. Fattening of Polish Holstein-Friesian × Limousin bulls under two production systems and its effect on the fatty acid profiles of different fat depots. Animals 2021;11:3078. https://doi.org/10.3390/ani11113078
  61. Zhou M, Zhu Z, Sun HZ, et al. Breed dependent regulatory mechanisms of beneficial and non-beneficial fatty acid profiles in subcutaneous adipose tissue in cattle with divergent feed efficiency. Sci Rep 2022;12:4612. https://doi.org/10.1038/s41598-022-08572-8
  62. Martinez-Alvaro M, Mattock J, Auffret M, et al. Microbiomedriven breeding strategy potentially improves beef fatty acid profile benefiting human health and reduces methane emissions. Microbiome 2022;10:166. https://doi.org/10.1186/s40168-022-01352-6
  63. Amin AB, Mao S. Influence of yeast on rumen fermentation, growth performance and quality of products in ruminants: a review. Anim Nutr 2021;7:31-41. https://doi.org/10.1016/j.aninu.2020.10.005
  64. Roque BM, Venegas M, Kinley RD, et al. Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers. PLoS One 2021;16:e0247820. https://doi.org/10.1371/journal.pone.0247820
  65. Richardson I, Duthie CA, Hyslop J, Rooke J, Roehe R. Nutritional strategies to reduce methane emissions from cattle: Effects on meat eating quality and retail shelf life of loin steaks. Meat Sci 2019;153:51-7. https://doi.org/10.1016/j.meatsci.2019.03.009
  66. Ngambi JW, Selapa MJ, Brown D, Manyelo TG. The effect of varying levels of purified condensed tannins on performance, blood profile, meat quality and methane emission in male Bapedi sheep fed grass hay and pellet-based diet. Trop Anim Health Prod 2022;54:263. https://doi.org/10.1007/s11250-022-03268-7
  67. Ouyang J, Hou Q, Wang M, et al. Effects of dietary mulberry leaf powder on growth performance, blood metabolites, meat quality, and antioxidant enzyme-related gene expression of fattening Hu lambs. Can J Anim Sci 2020;100:510-21. https://doi.org/10.1139/cjas-2019-0119
  68. Wang L, Gao H, Sun C, Huang L. Protective application of Morus and its extracts in animal production. Animals 2022;12:3541. https://doi.org/10.3390/ani12243541
  69. Sun H, Luo Y, Zhao F, et al. The effect of replacing wildrye hay with mulberry leaves on the growth performance, blood metabolites, and carcass characteristics of sheep. Animals 2020;10:2018. https://doi.org/10.3390/ani10112018
  70. Dorantes-Iturbide G, Orzuna-Orzuna JF, Lara-Bueno A, Mendoza-Martinez GD, Miranda-Remero LA, Lee-Rangel HA. Essential oils as a dietary additive for small ruminants: a meta-analysis on performance, rumen parameters, serum metabolites, and product quality. Vet Sci 2022;9:475. https://doi.org/10.3390/vetsci9090475
  71. Santos-Silva J, Francisco A, Portugal AP, et al. Effects of partial substitution of grain by agroindustrial byproducts and sunflower seed supplementation in beef haylage-based finisher diets on growth, in vitro methane production and carcass and meat quality. Meat Sci 2022;188:108782. https://doi.org/10.1016/j.meatsci.2022.108782
  72. Martínez-Álvaro M, Auffret MD, Duthie CA, et al. Bovine host genome acts on rumen microbiome function linked to methane emissions. Commun Biol 2022;5:350. https://doi.org/10.1038/s42003-022-03293-0
  73. Mahala S, Kala A, Kumar A. Host genetics associated with gut microbiota and methane emission in cattle. Mol Biol Rep 2022;49:8153-61. https://doi.org/10.1007/s11033-022-07718-1
  74. Rowe SJ, Hickey SM, Bain WE, et al. Can we have our steak and eat it: the impact of breeding for lowered environmental impact on yield and meat quality in sheep. Front Genet 2022;13:911355. https://doi.org/10.3389/fgene.2022.911355
  75. Manzanilla-Pech CIV, Stephansen RB, Difford GF, Lovendahl P, Lassen J. Selecting for feed efficient cows will help to reduce methane gas emissions. Front Genet 2022;13:885932. https://doi.org/10.3389/fgene.2022.885932
  76. Gurgeira DN, Crisostomo C, Sartori LVC, et al. Characteristics of growth, carcass and meat quality of sheep with different feed efficiency phenotypes. Meat Sci 2022;194:108959. https://doi.org/10.1016/j.meatsci.2022.108959
  77. Arce-Recinos C, Ramos-Juarez JA, Hernandez-Cazares AS, et al. Interplay between feed efficiency indices, performance, rumen fermentation parameters, carcass characteristics and meat quality in Pelibuey lambs. Meat Sci 2022;183:108670. https://doi.org/10.1016/j.meatsci.2021.108670
  78. Du E, Guo W, Zhao N, et al. Effects of diets with various levels of forage rape (Brassica napus) on growth performance, carcass traits, meat quality and rumen microbiota of Hu lambs. J Sci Food Agric 2022;102:1281-91. https://doi.org/10.1002/jsfa.11466
  79. Montelli NLLL, Alvarenga TIRC, Almeida AK, et al. Associations of feed efficiency with circulating IGF-1 and leptin, carcass traits and meat quality of lambs. Meat Sci 2021;173:108379. https://doi.org/10.1016/j.meatsci.2020.108379
  80. Detweiler RA, Pringle TD, Rekaya R, Wells JB, Segers JR. The impact of selection using residual average daily gain and marbling EPDs on growth, performance, and carcass traits in Angus steers. J Anim Sci 2019;97:2450-9. https://doi.org/10.1093/jas/skz124
  81. Meale SJ, Ruiz-Sanchez AL, Dervishi E, et al. Impact of genetic potential for residual feed intake and diet fed during earlyto mid-gestation in beef heifers on carcass characteristics and meat quality attributes of their castrated male offspring. Meat Sci 2021;182:108637. https://doi.org/10.1016/j.meatsci.2021.108637
  82. Nascimento ML, Souza ARDL, Chaves AS, et al. Feed efficiency indexes and their relationships with carcass, noncarcass and meat quality traits in Nellore steers. Meat Sci 2016;116:78-85. https://doi.org/10.1016/j.meatsci.2016.01.012
  83. Fedelis HA, Bonilha SFM, Tedeschi LO, et al. Residual feed intake, carcass traits and meat quality in Nellore cattle. Meat Sci 2017;128:34-9. https://doi.org/10.1016/j.meatsci.2017.02.004
  84. Buss CE, Afonso J, de Oliveria PSN, et al. Bivariate GWAS reveals pleiotropic regions among feed efficiency and beef quality-related traits in Nelore cattle. Mamm Genome 2023;34:90-103. https://doi.org/10.1007/s00335-022-09969-6
  85. Liu Y, Liu C, Wu H, Meng Q, Zhou Z. Small intestine microbiome and metabolome of high and low residual feed intake Angus heifers. Front Microbiol 2022;13:862151. https://doi.org/10.3389/fmicb.2022.862151
  86. Lourenco JM, Welch CB, Krause TR, et al. Fecal microbiome differences in Angus steers with differing feed efficiencies during the feedlot-finishing phase. Microorganisms 2022;10:1128. https://doi.org/10.3390/microorganisms10061128
  87. Inoue K, Kobayashi M, Shoji N, Kato K. Genetic parameters for fatty acid composition and feed efficiency traits in Japanese Black cattle. Animal 2011;5:987-94. https://doi.org/10.1017/S1751731111000012
  88. Tan RSG, Zhou M, Li F, Guan LL. Identifying active rumen epithelial associated bacteria and archaea in beef cattle divergent in feed efficiency using total RNA-seq. Curr Res Microb Sci 2021;2:100064. https://doi.org/10.1016/j.crmicr.2021.100064
  89. Zhang Y, Cai W, Li Q, et al. Transcriptome analysis of bovine rumen tissue in three developmental stages. Front Genet 2022;13:821406. https://doi.org/10.3389/fgene.2022.821406
  90. Wu JJ, Zhu S, Tang YF, et al. Microbiota-host crosstalk in the newborn and adult rumen at single-cell resolution. BMC Biol 2022;20:280. https://doi.org/10.1186/s12915-022-01490-1