References
- Abom, M. and Boden, H. (1987), "A method for estimating the sound power radiated from plates with prescribed excitation in the multi-mode region", Appl. Acoust., 22(3), 203-212. https://doi.org/10.1016/0003-682X(87)90037-5.
- Abrate, S. (2008), "Functionally graded plates behave like homogeneous plates", Compos. Part B: Eng., 39(1), 151-158. https://doi.org/10.1016/j.compositesb.2007.02.026.
- Al-Furjan, M.S.H., Habibi, M., Ghabussi, A., Safarpour, H., Safarpour, M. and Tounsi, A. (2021), "Non-polynomial framework for stress and strain response of the FG-GPLRC disk using three-dimensional refined higher-order theory", Eng. Struct., 228, 111496. https://doi.org/10.1016/j.engstruct.2020.111496.
- Al-Furjan, M.S.H., Habibi, M., Ni, J., Jung, D. won and Tounsi, A. (2022), "Frequency simulation of viscoelastic multi-phase reinforced fully symmetric systems", Eng. Comput., 38(5), 3725-3741. https://doi.org/10.1007/s00366-020-01200-x.
- Al-Furjan, M.S.H., Hatami, A., Habibi, M., Shan, L. and Tounsi, A. (2021), "On the vibrations of the imperfect sandwich higher-order disk with a lactic core using generalize differential quadrature method", Compos. Struct., 257, 113150. https://doi.org/10.1016/j.compstruct.2020.113150.
- Al-Osta, M.A., Saidi, H., Tounsi, A., Al-Dulaijan, S.U., AlZahrani, M.M., Sharif, A. and Tounsi, A. (2021), "Influence of porosity on the hygro-thermo-mechanical bending response of an AFG ceramic-metal plates using an integral plate model", Smart Struct. Syt., 28(4). https://doi.org/https://doi.org/10.12989/sss.2021.28.4.499.
- Ansys Core Team (2018), ANSYS® Academic Research Mechanical, Release 19.2, Help System, Acoustic Analysis Guide, ANSYS, Inc. Retrieved from www.ansys.com
- Arenas, J.P. (2002), "Sound radiation efficiency of a baffled rectangular plate excited by harmonic point forces using its surface resistance matrix", J. Acoust. Vib., 7(4), 2002.
- ARENAS, J.P. (2008), "Numerical computation of the sound radiation from a planar baffled vibrating surface", J. Comput. Acoust., 16(03), 321-341. https://doi.org/10.1142/S0218396X08003671.
- Arenas, J.P. (2008), "Numerical computation of the sound radiation from a planar baffled vibrating surface", J. Comput. Acoust., 16(03), 321-341. https://doi.org/10.1142/S0218396X08003671.
- Arenas, J.P. (2009b), "Matrix method for estimating the sound power radiated from a vibrating plate for noise control engineering applications", Lat. Am. Appl. Res., 39(4), 345-352.
- Arenas, JP. (2009a), "Matrix method for estimating the sound power radiated from a vibrating plate for noise control engineering applications", Lat. Am. Appl. Res., 39(4), 345-352.
- Bekkaye, T.H.L., Fahsi, B., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H. and Al-Zahrani, M.M. (2020), "Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory", Comput. Concrete, 26(5). https://doi.org/https://doi.org/10.12989/CAC.2020.26.5.439.
- Bendenia, N., Zidour, M., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H. and Tounsi, A. (2020), "Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation", Comput. Concrete, 26(3), 213-226. https://doi.org/https://doi.org/10.12989/CAC.2020.26.3.213.
- Boscolo, M. and Banerjee, J.R. (2014), "Layer-wise dynamic stiffness solution for free vibration analysis of laminated composite plates", J. Sound Vib., 333, 200-227. https://doi.org/10.1016/j.jsv.2013.08.031.
- Bouafia, H., Chikh, A., Bousahla, A.A., Bourada, F., Heireche, H., Tounsi, A. and Hussain, M. (2021), "Natural frequencies of FGM nanoplates embedded in an elastic medium", Adv. Nano Res., 11(3), 239-249. https://doi.org/https://doi.org/10.12989/anr.2021.11.3.239.
- Bouafia, K., Selim, M.M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Tounsi, A. (2021a), "Bending and free vibration characteristics of various compositions of FG plates on elastic foundation via quasi 3D HSDT model", Steel Compos. Struct., 41, 487-503. https://doi.org/10.12989/scs.2021.41.4.487.
- Bouafia, K., Selim, M.M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Tounsi, A. (2021b), "Bending and free vibration characteristics of various compositions of FG plates on elastic foundation via quasi 3D HSDT model", Steel Compos. Struct., 41(4), 487-503. https://doi.org/https://doi.org/10.12989/scs.2021.41.4.487.
- Cao, X., Hua, H. and Zhang, Z. (2011), "Sound radiation from shear deformable stiffened laminated plates", J. Sound Vib., 330(16), 4047-4063. https://doi.org/10.1016/j.jsv.2011.04.016.
- Cao, Z.Y., Tang, S.G. and Cheng, G.H. (2009), "3D analysis of functionally graded material plates with complex shapes and various holes", Appl. Mathem. Mech., 30(1), 13-18. https://doi.org/10.1007/s10483-009-0102-9.
- Carrera, E., Brischetto, S., Cinefra, M. and Soave, M. (2010), "Refined and advanced models for multilayered plates and shells embedding functionally graded material layers", Mech. Adv. Mater. Struct., 17(8), 603-621. https://doi.org/10.1080/15376494.2010.517730.
- Chakraverty, S. and Pradhan, K.K. (2016), "Vibration of functionally graded beams and plates", Vib. Funct. Graded Beams Plates. https://doi.org/10.1016/C2015-0-00496-8.
- Chandra, N., Nagendra Gopal, K.V. and Raja, S. (2015), "Vibro-acoustic response of sandwich plates with functionally graded core", Acta Mech., https://doi.org/10.1007/s00707-015-1513-1.
- Chandra, N., Raja, S. and Gopal, K.V.N. (2015), "A comprehensive analysis on the structural acoustic aspects of various functionally graded plates", Int. J. Appl. Mech., 7(5),1550072. https://doi.org/10.1142/S1758825115500726.
- Chandra, N., Raja, S. and Nagendra Gopal, K.V. (2014), "Vibro-acoustic response and sound transmission loss analysis of functionally graded plates", J. Sound Vib., 333(22), 5786-5802. https://doi.org/10.1016/j.jsv.2014.06.031.
- Chen, K. and Koopmann, G.H. (2002), "Active control of low-frequency sound radiation from vibrating panel using planar sound sources", ASME. J. Vib., Acoust., 124(1), 2-9. https://doi.org/10.1115/1.1420197.
- Chi, S.H. and Chung, Y.L. (2006), "Mechanical behavior of functionally graded material plates under transverse load-Part II: Numerical results", Int. J. Solids Struct., 43(13), 3675-3691. https://doi.org/10.1016/j.ijsolstr.2005.04.010.
- Chi, S.H. and Chung, Y.L. (2006), "Mechanical behavior of functionally graded material plates under transverse load-Part II: Numerical results", Int. J. Solids Struct., 43(13), 3675-3691. https://doi.org/10.1016/j.ijsolstr.2005.04.010.
- Cinefra, M. and Soave, M. (2011), "Accurate vibration analysis of multilayered plates made of functionally graded materials", Mech. Adv. Mater. Struct., 18(1), 3-13. https://doi.org/10.1080/15376494.2010.519204.
- Deng, J., Guasch, O., Maxit, L. and Gao, N. (2023), "Sound radiation and non-negative intensity of a metaplate consisting of an acoustic black hole plus local resonators", Compos. Struct., 304, 116423. https://doi.org/https://doi.org/10.1016/j.compstruct.2022.116423
- Efraim, E. (2011), "Accurate formula for determination of natural frequencies of FGM plates basing on frequencies of isotropic plates", Procedia Eng., 10, 242-247. https://doi.org/10.1016/j.proeng.2011.04.043.
- Fahy, F. and Gardonio, P. (2001), Sound and Structural Vibration Radiation,Transmission and Response, Southampton,England: Academic Press.
- Geng, Q. and Li, Y. (2016), "Solutions of dynamic and acoustic responses of a clamped rectangular plate in thermal environments", J. Vib. Control, 22(6), 1593-1603. https://doi.org/10.1177/1077546314543730.
- Geng, Q., Li, H. and Li, Y. (2014a), "Dynamic and acoustic response of a clamped rectangular plate in thermal environments: Experiment and numerical simulation", J. Acoust. Soc. Amer., 135(5), 2674-2682. https://doi.org/10.1121/1.4870483.
- Geng, Q., Li, H. and Li, Y. (2014b), "Dynamic and acoustic response of a clamped rectangular zplate in thermal environments: Experiment and numerical simulation", J. Acoust. Soc. Am., 135(5), 2674-2682. https://doi.org/10.1121/1.4870483.
- Hachemi, H., Bousahla, A.A., Kaci, A., Bourada, F., Tounsi, A., Benrahou, K.H. and Mahmoud, S.R. (2021a), "Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position", Steel Compos. Struct., 39(1), 51-64. https://doi.org/10.12989/SCS.2021.39.1.051.
- Hachemi, H., Bousahla, A.A., Kaci, A., Bourada, F., Tounsi, A., Benrahou, K.H. and Mahmoud, S.R. (2021b), "Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position", Steel Compos. Struct., 39(1), 51-64. https://doi.org/https://doi.org/10.12989/SCS.2021.39.1.051.
- Hendy, D.J. (1988), "Numerical evaluation of the sound power radiated from baffled, rectangular panels", J. Sound Vib., 127(2), 283-289. https://doi.org/10.1016/0022-460X(88)90303-3.
- Huang, X., Hao, H., Oslub, K., Habibi, M. and Tounsi, A. (2022), "Dynamic stability/instability simulation of the rotary size-dependent functionally graded microsystem", Eng. Comput., 38(5), 4163-4179. https://doi.org/https://10.1007/s00366-021-01399-3.
- Huang, Y., Karami, B., Shahsavari, D. and Tounsi, A. (2021), "Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels", Archiv. Civil Mech. Eng., 21(4), 139. https://doi.org/10.1007/s43452-021-00291-7.
- Ingard K.U. and Akay, A. (1987), "Acoustic radiation from bending waves of a plate", ASME. J. Vib., Acoust., 109(1), 75-81. https://doi.org/10.1115/1.3269398.
- Kim, H., Ryue, J., Qiao, Y., Huang, Q. and Sorokin, S.V. (2000), "Sound radiation from a perforated panel set in a baffle with a different perforation ratio", J. Sound Vib., 71(2), 317-341. https://doi.org/10.1134/1.1608978.
- Kirkup, S. (2018), Introduction to the Boundary Element Method ; Boundary Element Solution of Laplace Problems : BEMLAP Fortran Package Introduction to the Boundary Element Method. (July).
- Kirkup, S.M. (1994), "Computational solution of the acoustic field surrounding a baffled panel by the Rayleigh integral method", Appl. Mathem. Modelling, 18(7), 403-407. https://doi.org/10.1016/0307-904X(94)90227-5.
- Kirkup, S.M. (1998), "Fortran codes for computing the discrete Helmholtz integral operators", Adv. Comput. Math., 9(9) 391-409. https://doi.org/10.1023/A:1018953910353
- Kouider, D., Kaci, A., Selim, M.M., Bousahla, A.A., Bourada, F., Tounsi, A. and Hussain, M. (2021), "An original four-variable quasi-3D shear deformation theory for the static and free vibration analysis of new type of sandwich plates with both FG face sheets and FGM hard core.", Steel Compos. Struct., 41(2), 167-191. https://doi.org/https://doi.org/10.12989/scs.2021.41.2.167.
- Kumar, A., Gunasekaran, V., Chinnapandi Milan, Babu, L. and Pitchaimani, J. (2020), "Acoustic response behavior of porous 3D graphene foam plate", Appl. Acoustics, 169(107431). https://doi.org/10.1016/j.apacoust.2020.107431.
- Kumar, S. and Jana, P. (2019), "Application of dynamic stiffness method for accurate free vibration analysis of sigmoid and exponential functionally graded rectangular plates", Int. J. Mech. Sci., 163, 105105. https://doi.org/10.1016/j.ijmecsci.2019.105105.
- Kumar, S., Ranjan, V. and Jana, P. (2018), "Free vibration analysis of thin functionally graded rectangular plates using the dynamic stiffness method", Compos. Struct., 197, 39-53. https://doi.org/10.1016/j.compstruct.2018.04.085.
- Kumar, Y., Gupta, A. and Tounsi, A. (2021), "Size-dependent vibration response of porous graded nanostructure with FEM and nonlocal continuum model", Adv. Nano Res., 11(1), 001-017. https://doi.org/https://doi.org/10.12989/anr.2021.11.1.001.
- Li, S. and Li, X. (2008), "The effects of distributed masses on acoustic radiation behavior of plates", Appl. Acoustic, 69(3), 272-279. https://doi.org/10.1016/j.apacoust.2006.11.004.
- Liu, Y. and Li, Y. (2013), "Vibration and acoustic response of rectangular sandwich plate under thermal environment", Shock Vib., 20(5), 1011-1030. https://doi.org/10.3233/SAV-130801.
- Mace, B.R. (1980), "Sound radiation from a plate reinforced by two sets of parallel stiffeners", Top. Catal., 71(3), 435-441. https://doi.org/10.1016/0022-460X(80)90425-3.
- Mace, B.R. (1981), "Sound radiation from fluid loaded orthogonally stiffened plates", J. Sound Vib., 79(3), 439-452. https://doi.org/10.1016/0022-460X(81)90321-7.
- Mao, Q. and Pietrzko, S. (2013a), Control of Noise and Structural.
- Mao, Q. and Pietrzko, S. (2013b), Control of Noise and Structural Vibration: A MATLAB®-Based Approach. https://doi.org/10.1007/978-1-4471-5091-6.
- Marburg, S., Losche, E., Peters, H. and Kessissoglou, N. (2013), "Surface contributions to radiated sound power", J. Acoustic. Soc. Amer., 133(6), 3700-3705. https://doi.org/https://10.1121/1.4802741.
- Menasria, A., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H. and Mahmoud, S.R. (2020), "A four-unknown refined plate theory for dynamic analysis of FG-sandwich plates under various boundary conditions", Steel Compos. Struct., 36(3), 355-367. https://doi.org/10.12989/scs.2020.36.3.355.
- Merazka, B., Bouhadra, A., Menasria, A., Selim, M.M., Bousahla, A.A., Bourada, F. and Al-Zahrani, M.M. (2021), "Hygro-thermo-mechanical bending response of FG plates resting on elastic foundations", Steel Compos. Struct., 39(5), 631-643. https://doi.org/10.12989/scs.2021.39.5.631.
- Merazka, B., Bouhadra, A., Menasria, A., Selim, M.M., Bousahla, A.A., Bourada, F. and Al-Zahrani, M.M. (2021b), "Hygro-thermo-mechanical bending response of FG plates resting on elastic foundations", Steel Compos. Struct., 39(5). https://doi.org/https://doi.org/10.12989/scs.2021.39.5.631.
- Mudhaffar, I.M., Tounsi, A., Chikh, A., Al-Osta, M.A., Al-Zahrani, M.M. and Al-Dulaijan, S.U. (2021), "Hygro-thermo-mechanical bending behavior of advanced functionally graded ceramic metal plate resting on a viscoelastic foundation", Structures, 33, 2177-2189. https://doi.org/10.1016/j.istruc.2021.05.090.
- Naghshineh, K., Koopmann G. and Belegundu, A. (1992), "Material Tailoring of structures to achieve a minimum radiation condition", J. Acoust. Soc. Am., 92(2), 841-855. https://doi.org/10.1121/1.403955.
- Putra, A. (2007), "Sound radiation from perforated plates", J. Sound Vib., 329(20),
- Putra, A. (2010), "Sound radiation from perforated plates", J. Sound Vib., 329(20), 4227-4250. https://doi.org/10.1016/j.jsv.2010.04.020.
- Putra, A. and Thompson, D.J. (2010), "Sound radiation from rectangular baffled and unbaffled plates", Appl. Acoustics, 71(12), 1113-1125. https://doi.org/10.1016/j.apacoust.2010.06.009.
- Putra, A., Shyafina, N., Thompson, D., Muhammad, N., Jailani, M., Nor, M. and Nuawi, Z. (2014), "Modelling sound radiation from a baffled vibrating plate for diifferent boundary conditions using an elementary source technique", Inter.Noise, 10, 1-8.
- Rachid, A., Ouinas, D., Lousdad, A., Zaoui, F.Z., Achour, B., Gasmi, H. and Tounsi, A. (2022), "Mechanical behavior and free vibration analysis of FG doubly curved shells on elastic foundation via a new modified displacements field model of 2D and quasi-3D HSDTs", Thin-Wall. Struct., 172, 108783. https://doi.org/10.1016/j.tws.2021.108783.
- Reynders, E., Van Hoorickx, C. and Dijckmans, A. (2016), "Sound transmission through finite rib-stiffened and orthotropic plates", Acta Acustica United Acustica, 102(6), 999-1010. https://doi.org/10.3813/AAA.919015.
- Tahir, S.I., Chikh, A., Tounsi, A., Al-Osta, M.A., Al-Dulaijan, S. U. and Al-Zahrani, M.M. (2021), "Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment", Compos. Struct., 269, 114030. https://doi.org/10.1016/j.compstruct.2021.114030.
- Talha, M. and Singh, B.N. (2010), "Static response and free vibration analysis of FGM plates using higher order shear deformation theory", Appl. Math. Model., 34(12), 3991-4011. https://doi.org/10.1016/j.apm.2010.03.034.
- Tao, J., Ge, H. and Qiu, X. (2006a), "A new rule of vibration sampling for predicting acoustical radiation from rectangular plates", Appl. Acoust., 67(8), 756-770. https://doi.org/10.1016/j.apacoust.2005.12.005.
- Tao, J., Ge, H. and Qiu, X. (2006b), "A new rule of vibration sampling for predicting acoustical radiation from rectangular plates", Appl. Acoust., 67(8), 756-770. https://doi.org/10.1016/j.apacoust.2005.12.005.
- Thai, C.H., Kulasegaram, S., Tran, L.V. and Nguyen-Xuan, H. (2014), "Generalized shear deformation theory for functionally graded isotropic and sandwich plates based on isogeometric approach", Comput Struct., 141, 94-112. https://doi.org/https://doi.org/10.1016/j.compstruc.2014.04.003.
- Vel, S.S. and Batra, R.C. (2004), "Three-dimensional exact solution for the vibration of functionally graded rectangular plates", J. Sound Vib., 272(3-5), 703-730. https://doi.org/10.1016/S0022-460X(03)00412-7.
- Wallace, C.E. (1972), "Radiation resistance of a rectangular panel", J. Acoustic. Soc. Amer., 51(3B), 946. https://doi.org/10.1121/1.1912943.
- Wang, Y.Q. and Zu, J.W. (2017), "Large-amplitude vibration of sigmoid functionally graded thin plates with porosities", Thin-Wall. Struct., 119, 911-924. https://doi.org/10.1016/j.tws.2017.08.012.
- Wu, J.H., Chen, H.L. and An, W.B. (2000), "Method to predict sound radiation from a plate-ended cylindrical shell excited by an external force", J. Sound Vib., 237(5), 793-803. https://doi.org/10.1006/jsvi.2000.3052.
- Yang, T., Huang, Q. and Li, S. (2016), "Three-dimensional elasticity solutions for sound radiation of functionally graded materials plates considering state space method", Shock Vib., 2016(Article ID 1403856), 15. https://doi.org/10.1155/2016/1403856.
- Yang, T., Zheng, W., Huang, Q. and Li, S. (2016a), "Sound radiation of functionally graded materials plates in thermal environment", Compos. Struct., 144, 165-176. https://doi.org/10.1016/j.compstruct.2016.02.065.
- Yang, T., Zheng, W., Huang, Q. and Li, S. (2016b), "Sound radiation of functionally graded materials plates in thermal environment", Compos. Struct., 144, 165-176. https://doi.org/10.1016/j.compstruct.2016.02.065.
- Zaitoun, M.W., Chikh, A., Tounsi, A., Al-Osta, M.A., Sharif, A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2022), "Influence of the visco-Pasternak foundation parameters on the buckling behavior of a sandwich functional graded ceramic-metal plate in a hygrothermal environment", Thin-Wall. Struct., 170, 108549. https://doi.org/https://doi.org/10.1016/j.tws.2021.108549.
- Zerrouki, R., Karas, A., Zidour, M., Bousahla, A.A., Tounsi, A., Bourada, F. and Mahmoud, S.R. (2021), "Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam", Struct. Eng. Mech., 78(2), 117-124. https://doi.org/https://doi.org/10.12989/sem.2021.78.2.117.
- Zhang, D.G. and Zhou, Y.H. (2008), "A theoretical analysis of FGM thin plates based on physical neutral surface", Comput. Mate. Sci., 44(2), 716-720. https://doi.org/10.1016/j.commatsci.2008.05.016.
- Zhou, K., Lin, Z., Huang, X. and Hua, H. (2019), "Vibration and sound radiation analysis of temperature-dependent porous functionally graded material plates with general boundary conditions", Appl. Acoustics, 154, 236-250. https://doi.org/10.1016/j.apacoust.2019.05.003.
- Zhou, K., Su, J. and Hua, H. (2018), "Closed form solutions for vibration and sound radiation of orthotropic plates under thermal environment", J. Sound Vib., 18(07), 1850098. https://doi.org/10.1142/S0219455418500980.