DOI QR코드

DOI QR Code

Vibroacoustic response of thin power law indexed functionally graded plates

  • Baij Nath Singh (Department of Mechanical Engineering, Indian Institute of Technology) ;
  • Vinayak Ranjan (Department of Mechanical Engineering, Bennett University) ;
  • R.N. Hota (Department of Mechanical Engineering, Indian Institute of Technology)
  • Received : 2022.01.25
  • Accepted : 2024.01.11
  • Published : 2024.02.10

Abstract

The main objective of this paper is to compute the far-field acoustic radiation (sound radiation) of functionally graded plates (FGM) loaded by sinusoidally varying point load subjected to the arbitrary boundary condition is carried out. The governing differential equations for thin functionally graded plates (FGM) are derived using classical plate theory (CPT) and Rayleigh integral using the elemental radiator approach. Four cases, segregated on power-law index k=0,1,5,10, are studied. A novel approach is illustrated to compute sound fields of vibrating FGM plates using the physical neutral surface with an elemental radiator approach. The material properties of the FGM plate for all cases are calculated considering the power law indexes. An in-house MATLAB code is written to compute the natural frequencies, normal surface velocities, and sound radiation fields are analytically calculated using semi-analytical formulation. Ansys is used to validate the computed sound power level. The parametric effects of the power law index, modulus ratios, different constituent of FGM plates, boundary conditions, damping loss factor on the sound power level, and radiation efficiency is illustrated. This work is the benchmark approach that clearly explains how to calculate acoustic fields using a solid layered FGM model in ANSYS ACT. It shows that it is possible to asymptotically stabilize the structure by controlling the intermittent layers' stiffness. It is found that sound fields radiated by the elemental radiators approach in MATLAB, ANSYS and literatures are in good agreement. The main novelty of this research is that the FGM plate is analyzed in the low-frequency range, where the stiffness-controlled region governs the whole analysis. It is concluded that a clamped mono-ceramic FGM plate radiates a lesser sound power level and higher radiation efficiency than a mono-metallic or metal-rich FGM plate due to higher stiffness. It is found that change in damping loss factor does not affect the same constituents of FGM plates but has significant effects on the different constituents of FGM plates.

Keywords

References

  1. Abom, M. and Boden, H. (1987), "A method for estimating the sound power radiated from plates with prescribed excitation in the multi-mode region", Appl. Acoust., 22(3), 203-212. https://doi.org/10.1016/0003-682X(87)90037-5. 
  2. Abrate, S. (2008), "Functionally graded plates behave like homogeneous plates", Compos. Part B: Eng., 39(1), 151-158. https://doi.org/10.1016/j.compositesb.2007.02.026. 
  3. Al-Furjan, M.S.H., Habibi, M., Ghabussi, A., Safarpour, H., Safarpour, M. and Tounsi, A. (2021), "Non-polynomial framework for stress and strain response of the FG-GPLRC disk using three-dimensional refined higher-order theory", Eng. Struct., 228, 111496. https://doi.org/10.1016/j.engstruct.2020.111496. 
  4. Al-Furjan, M.S.H., Habibi, M., Ni, J., Jung, D. won and Tounsi, A. (2022), "Frequency simulation of viscoelastic multi-phase reinforced fully symmetric systems", Eng. Comput., 38(5), 3725-3741. https://doi.org/10.1007/s00366-020-01200-x. 
  5. Al-Furjan, M.S.H., Hatami, A., Habibi, M., Shan, L. and Tounsi, A. (2021), "On the vibrations of the imperfect sandwich higher-order disk with a lactic core using generalize differential quadrature method", Compos. Struct., 257, 113150. https://doi.org/10.1016/j.compstruct.2020.113150. 
  6. Al-Osta, M.A., Saidi, H., Tounsi, A., Al-Dulaijan, S.U., AlZahrani, M.M., Sharif, A. and Tounsi, A. (2021), "Influence of porosity on the hygro-thermo-mechanical bending response of an AFG ceramic-metal plates using an integral plate model", Smart Struct. Syt., 28(4). https://doi.org/https://doi.org/10.12989/sss.2021.28.4.499. 
  7. Ansys Core Team (2018), ANSYS® Academic Research Mechanical, Release 19.2, Help System, Acoustic Analysis Guide, ANSYS, Inc. Retrieved from www.ansys.com 
  8. Arenas, J.P. (2002), "Sound radiation efficiency of a baffled rectangular plate excited by harmonic point forces using its surface resistance matrix", J. Acoust. Vib., 7(4), 2002. 
  9. ARENAS, J.P. (2008), "Numerical computation of the sound radiation from a planar baffled vibrating surface", J. Comput. Acoust., 16(03), 321-341. https://doi.org/10.1142/S0218396X08003671. 
  10. Arenas, J.P. (2008), "Numerical computation of the sound radiation from a planar baffled vibrating surface", J. Comput. Acoust., 16(03), 321-341. https://doi.org/10.1142/S0218396X08003671. 
  11. Arenas, J.P. (2009b), "Matrix method for estimating the sound power radiated from a vibrating plate for noise control engineering applications", Lat. Am. Appl. Res., 39(4), 345-352. 
  12. Arenas, JP. (2009a), "Matrix method for estimating the sound power radiated from a vibrating plate for noise control engineering applications", Lat. Am. Appl. Res., 39(4), 345-352. 
  13. Bekkaye, T.H.L., Fahsi, B., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H. and Al-Zahrani, M.M. (2020), "Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory", Comput. Concrete, 26(5). https://doi.org/https://doi.org/10.12989/CAC.2020.26.5.439. 
  14. Bendenia, N., Zidour, M., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H. and Tounsi, A. (2020), "Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation", Comput. Concrete, 26(3), 213-226. https://doi.org/https://doi.org/10.12989/CAC.2020.26.3.213. 
  15. Boscolo, M. and Banerjee, J.R. (2014), "Layer-wise dynamic stiffness solution for free vibration analysis of laminated composite plates", J. Sound Vib., 333, 200-227. https://doi.org/10.1016/j.jsv.2013.08.031. 
  16. Bouafia, H., Chikh, A., Bousahla, A.A., Bourada, F., Heireche, H., Tounsi, A. and Hussain, M. (2021), "Natural frequencies of FGM nanoplates embedded in an elastic medium", Adv. Nano Res., 11(3), 239-249. https://doi.org/https://doi.org/10.12989/anr.2021.11.3.239. 
  17. Bouafia, K., Selim, M.M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Tounsi, A. (2021a), "Bending and free vibration characteristics of various compositions of FG plates on elastic foundation via quasi 3D HSDT model", Steel Compos. Struct., 41, 487-503. https://doi.org/10.12989/scs.2021.41.4.487. 
  18. Bouafia, K., Selim, M.M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Tounsi, A. (2021b), "Bending and free vibration characteristics of various compositions of FG plates on elastic foundation via quasi 3D HSDT model", Steel Compos. Struct., 41(4), 487-503. https://doi.org/https://doi.org/10.12989/scs.2021.41.4.487. 
  19. Cao, X., Hua, H. and Zhang, Z. (2011), "Sound radiation from shear deformable stiffened laminated plates", J. Sound Vib., 330(16), 4047-4063. https://doi.org/10.1016/j.jsv.2011.04.016. 
  20. Cao, Z.Y., Tang, S.G. and Cheng, G.H. (2009), "3D analysis of functionally graded material plates with complex shapes and various holes", Appl. Mathem. Mech., 30(1), 13-18. https://doi.org/10.1007/s10483-009-0102-9. 
  21. Carrera, E., Brischetto, S., Cinefra, M. and Soave, M. (2010), "Refined and advanced models for multilayered plates and shells embedding functionally graded material layers", Mech. Adv. Mater. Struct., 17(8), 603-621. https://doi.org/10.1080/15376494.2010.517730. 
  22. Chakraverty, S. and Pradhan, K.K. (2016), "Vibration of functionally graded beams and plates", Vib. Funct. Graded Beams Plates. https://doi.org/10.1016/C2015-0-00496-8. 
  23. Chandra, N., Nagendra Gopal, K.V. and Raja, S. (2015), "Vibro-acoustic response of sandwich plates with functionally graded core", Acta Mech., https://doi.org/10.1007/s00707-015-1513-1. 
  24. Chandra, N., Raja, S. and Gopal, K.V.N. (2015), "A comprehensive analysis on the structural acoustic aspects of various functionally graded plates", Int. J. Appl. Mech., 7(5),1550072. https://doi.org/10.1142/S1758825115500726. 
  25. Chandra, N., Raja, S. and Nagendra Gopal, K.V. (2014), "Vibro-acoustic response and sound transmission loss analysis of functionally graded plates", J. Sound Vib., 333(22), 5786-5802. https://doi.org/10.1016/j.jsv.2014.06.031. 
  26. Chen, K. and Koopmann, G.H. (2002), "Active control of low-frequency sound radiation from vibrating panel using planar sound sources", ASME. J. Vib., Acoust., 124(1), 2-9. https://doi.org/10.1115/1.1420197. 
  27. Chi, S.H. and Chung, Y.L. (2006), "Mechanical behavior of functionally graded material plates under transverse load-Part II: Numerical results", Int. J. Solids Struct., 43(13), 3675-3691. https://doi.org/10.1016/j.ijsolstr.2005.04.010. 
  28. Chi, S.H. and Chung, Y.L. (2006), "Mechanical behavior of functionally graded material plates under transverse load-Part II: Numerical results", Int. J. Solids Struct., 43(13), 3675-3691. https://doi.org/10.1016/j.ijsolstr.2005.04.010. 
  29. Cinefra, M. and Soave, M. (2011), "Accurate vibration analysis of multilayered plates made of functionally graded materials", Mech. Adv. Mater. Struct., 18(1), 3-13. https://doi.org/10.1080/15376494.2010.519204. 
  30. Deng, J., Guasch, O., Maxit, L. and Gao, N. (2023), "Sound radiation and non-negative intensity of a metaplate consisting of an acoustic black hole plus local resonators", Compos. Struct., 304, 116423. https://doi.org/https://doi.org/10.1016/j.compstruct.2022.116423 
  31. Efraim, E. (2011), "Accurate formula for determination of natural frequencies of FGM plates basing on frequencies of isotropic plates", Procedia Eng., 10, 242-247. https://doi.org/10.1016/j.proeng.2011.04.043. 
  32. Fahy, F. and Gardonio, P. (2001), Sound and Structural Vibration Radiation,Transmission and Response, Southampton,England: Academic Press. 
  33. Geng, Q. and Li, Y. (2016), "Solutions of dynamic and acoustic responses of a clamped rectangular plate in thermal environments", J. Vib. Control, 22(6), 1593-1603. https://doi.org/10.1177/1077546314543730. 
  34. Geng, Q., Li, H. and Li, Y. (2014a), "Dynamic and acoustic response of a clamped rectangular plate in thermal environments: Experiment and numerical simulation", J. Acoust. Soc. Amer., 135(5), 2674-2682. https://doi.org/10.1121/1.4870483. 
  35. Geng, Q., Li, H. and Li, Y. (2014b), "Dynamic and acoustic response of a clamped rectangular zplate in thermal environments: Experiment and numerical simulation", J. Acoust. Soc. Am., 135(5), 2674-2682. https://doi.org/10.1121/1.4870483. 
  36. Hachemi, H., Bousahla, A.A., Kaci, A., Bourada, F., Tounsi, A., Benrahou, K.H. and Mahmoud, S.R. (2021a), "Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position", Steel Compos. Struct., 39(1), 51-64. https://doi.org/10.12989/SCS.2021.39.1.051. 
  37. Hachemi, H., Bousahla, A.A., Kaci, A., Bourada, F., Tounsi, A., Benrahou, K.H. and Mahmoud, S.R. (2021b), "Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position", Steel Compos. Struct., 39(1), 51-64. https://doi.org/https://doi.org/10.12989/SCS.2021.39.1.051. 
  38. Hendy, D.J. (1988), "Numerical evaluation of the sound power radiated from baffled, rectangular panels", J. Sound Vib., 127(2), 283-289. https://doi.org/10.1016/0022-460X(88)90303-3. 
  39. Huang, X., Hao, H., Oslub, K., Habibi, M. and Tounsi, A. (2022), "Dynamic stability/instability simulation of the rotary size-dependent functionally graded microsystem", Eng. Comput., 38(5), 4163-4179. https://doi.org/https://10.1007/s00366-021-01399-3. 
  40. Huang, Y., Karami, B., Shahsavari, D. and Tounsi, A. (2021), "Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels", Archiv. Civil Mech. Eng., 21(4), 139. https://doi.org/10.1007/s43452-021-00291-7. 
  41. Ingard K.U. and Akay, A. (1987), "Acoustic radiation from bending waves of a plate", ASME. J. Vib., Acoust., 109(1), 75-81. https://doi.org/10.1115/1.3269398. 
  42. Kim, H., Ryue, J., Qiao, Y., Huang, Q. and Sorokin, S.V. (2000), "Sound radiation from a perforated panel set in a baffle with a different perforation ratio", J. Sound Vib., 71(2), 317-341. https://doi.org/10.1134/1.1608978. 
  43. Kirkup, S. (2018), Introduction to the Boundary Element Method ; Boundary Element Solution of Laplace Problems : BEMLAP Fortran Package Introduction to the Boundary Element Method. (July). 
  44. Kirkup, S.M. (1994), "Computational solution of the acoustic field surrounding a baffled panel by the Rayleigh integral method", Appl. Mathem. Modelling, 18(7), 403-407. https://doi.org/10.1016/0307-904X(94)90227-5. 
  45. Kirkup, S.M. (1998), "Fortran codes for computing the discrete Helmholtz integral operators", Adv. Comput. Math., 9(9) 391-409.  https://doi.org/10.1023/A:1018953910353
  46. Kouider, D., Kaci, A., Selim, M.M., Bousahla, A.A., Bourada, F., Tounsi, A. and Hussain, M. (2021), "An original four-variable quasi-3D shear deformation theory for the static and free vibration analysis of new type of sandwich plates with both FG face sheets and FGM hard core.", Steel Compos. Struct., 41(2), 167-191. https://doi.org/https://doi.org/10.12989/scs.2021.41.2.167. 
  47. Kumar, A., Gunasekaran, V., Chinnapandi Milan, Babu, L. and Pitchaimani, J. (2020), "Acoustic response behavior of porous 3D graphene foam plate", Appl. Acoustics, 169(107431). https://doi.org/10.1016/j.apacoust.2020.107431. 
  48. Kumar, S. and Jana, P. (2019), "Application of dynamic stiffness method for accurate free vibration analysis of sigmoid and exponential functionally graded rectangular plates", Int. J. Mech. Sci., 163, 105105. https://doi.org/10.1016/j.ijmecsci.2019.105105. 
  49. Kumar, S., Ranjan, V. and Jana, P. (2018), "Free vibration analysis of thin functionally graded rectangular plates using the dynamic stiffness method", Compos. Struct., 197, 39-53. https://doi.org/10.1016/j.compstruct.2018.04.085. 
  50. Kumar, Y., Gupta, A. and Tounsi, A. (2021), "Size-dependent vibration response of porous graded nanostructure with FEM and nonlocal continuum model", Adv. Nano Res., 11(1), 001-017. https://doi.org/https://doi.org/10.12989/anr.2021.11.1.001. 
  51. Li, S. and Li, X. (2008), "The effects of distributed masses on acoustic radiation behavior of plates", Appl. Acoustic, 69(3), 272-279. https://doi.org/10.1016/j.apacoust.2006.11.004. 
  52. Liu, Y. and Li, Y. (2013), "Vibration and acoustic response of rectangular sandwich plate under thermal environment", Shock Vib., 20(5), 1011-1030. https://doi.org/10.3233/SAV-130801. 
  53. Mace, B.R. (1980), "Sound radiation from a plate reinforced by two sets of parallel stiffeners", Top. Catal., 71(3), 435-441. https://doi.org/10.1016/0022-460X(80)90425-3. 
  54. Mace, B.R. (1981), "Sound radiation from fluid loaded orthogonally stiffened plates", J. Sound Vib., 79(3), 439-452. https://doi.org/10.1016/0022-460X(81)90321-7. 
  55. Mao, Q. and Pietrzko, S. (2013a), Control of Noise and Structural.
  56. Mao, Q. and Pietrzko, S. (2013b), Control of Noise and Structural Vibration: A MATLAB®-Based Approach. https://doi.org/10.1007/978-1-4471-5091-6. 
  57. Marburg, S., Losche, E., Peters, H. and Kessissoglou, N. (2013), "Surface contributions to radiated sound power", J. Acoustic. Soc. Amer., 133(6), 3700-3705. https://doi.org/https://10.1121/1.4802741. 
  58. Menasria, A., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H. and Mahmoud, S.R. (2020), "A four-unknown refined plate theory for dynamic analysis of FG-sandwich plates under various boundary conditions", Steel Compos. Struct., 36(3), 355-367. https://doi.org/10.12989/scs.2020.36.3.355. 
  59. Merazka, B., Bouhadra, A., Menasria, A., Selim, M.M., Bousahla, A.A., Bourada, F. and Al-Zahrani, M.M. (2021), "Hygro-thermo-mechanical bending response of FG plates resting on elastic foundations", Steel Compos. Struct., 39(5), 631-643. https://doi.org/10.12989/scs.2021.39.5.631. 
  60. Merazka, B., Bouhadra, A., Menasria, A., Selim, M.M., Bousahla, A.A., Bourada, F. and Al-Zahrani, M.M. (2021b), "Hygro-thermo-mechanical bending response of FG plates resting on elastic foundations", Steel Compos. Struct., 39(5). https://doi.org/https://doi.org/10.12989/scs.2021.39.5.631. 
  61. Mudhaffar, I.M., Tounsi, A., Chikh, A., Al-Osta, M.A., Al-Zahrani, M.M. and Al-Dulaijan, S.U. (2021), "Hygro-thermo-mechanical bending behavior of advanced functionally graded ceramic metal plate resting on a viscoelastic foundation", Structures, 33, 2177-2189. https://doi.org/10.1016/j.istruc.2021.05.090. 
  62. Naghshineh, K., Koopmann G. and Belegundu, A. (1992), "Material Tailoring of structures to achieve a minimum radiation condition", J. Acoust. Soc. Am., 92(2), 841-855. https://doi.org/10.1121/1.403955. 
  63. Putra, A. (2007), "Sound radiation from perforated plates", J. Sound Vib., 329(20), 
  64. Putra, A. (2010), "Sound radiation from perforated plates", J. Sound Vib., 329(20), 4227-4250. https://doi.org/10.1016/j.jsv.2010.04.020. 
  65. Putra, A. and Thompson, D.J. (2010), "Sound radiation from rectangular baffled and unbaffled plates", Appl. Acoustics, 71(12), 1113-1125. https://doi.org/10.1016/j.apacoust.2010.06.009. 
  66. Putra, A., Shyafina, N., Thompson, D., Muhammad, N., Jailani, M., Nor, M. and Nuawi, Z. (2014), "Modelling sound radiation from a baffled vibrating plate for diifferent boundary conditions using an elementary source technique", Inter.Noise, 10, 1-8. 
  67. Rachid, A., Ouinas, D., Lousdad, A., Zaoui, F.Z., Achour, B., Gasmi, H. and Tounsi, A. (2022), "Mechanical behavior and free vibration analysis of FG doubly curved shells on elastic foundation via a new modified displacements field model of 2D and quasi-3D HSDTs", Thin-Wall. Struct., 172, 108783. https://doi.org/10.1016/j.tws.2021.108783. 
  68. Reynders, E., Van Hoorickx, C. and Dijckmans, A. (2016), "Sound transmission through finite rib-stiffened and orthotropic plates", Acta Acustica United Acustica, 102(6), 999-1010. https://doi.org/10.3813/AAA.919015. 
  69. Tahir, S.I., Chikh, A., Tounsi, A., Al-Osta, M.A., Al-Dulaijan, S. U. and Al-Zahrani, M.M. (2021), "Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment", Compos. Struct., 269, 114030. https://doi.org/10.1016/j.compstruct.2021.114030. 
  70. Talha, M. and Singh, B.N. (2010), "Static response and free vibration analysis of FGM plates using higher order shear deformation theory", Appl. Math. Model., 34(12), 3991-4011. https://doi.org/10.1016/j.apm.2010.03.034. 
  71. Tao, J., Ge, H. and Qiu, X. (2006a), "A new rule of vibration sampling for predicting acoustical radiation from rectangular plates", Appl. Acoust., 67(8), 756-770. https://doi.org/10.1016/j.apacoust.2005.12.005. 
  72. Tao, J., Ge, H. and Qiu, X. (2006b), "A new rule of vibration sampling for predicting acoustical radiation from rectangular plates", Appl. Acoust., 67(8), 756-770. https://doi.org/10.1016/j.apacoust.2005.12.005. 
  73. Thai, C.H., Kulasegaram, S., Tran, L.V. and Nguyen-Xuan, H. (2014), "Generalized shear deformation theory for functionally graded isotropic and sandwich plates based on isogeometric approach", Comput Struct., 141, 94-112. https://doi.org/https://doi.org/10.1016/j.compstruc.2014.04.003. 
  74. Vel, S.S. and Batra, R.C. (2004), "Three-dimensional exact solution for the vibration of functionally graded rectangular plates", J. Sound Vib., 272(3-5), 703-730. https://doi.org/10.1016/S0022-460X(03)00412-7. 
  75. Wallace, C.E. (1972), "Radiation resistance of a rectangular panel", J. Acoustic. Soc. Amer., 51(3B), 946. https://doi.org/10.1121/1.1912943. 
  76. Wang, Y.Q. and Zu, J.W. (2017), "Large-amplitude vibration of sigmoid functionally graded thin plates with porosities", Thin-Wall. Struct., 119, 911-924. https://doi.org/10.1016/j.tws.2017.08.012. 
  77. Wu, J.H., Chen, H.L. and An, W.B. (2000), "Method to predict sound radiation from a plate-ended cylindrical shell excited by an external force", J. Sound Vib., 237(5), 793-803. https://doi.org/10.1006/jsvi.2000.3052. 
  78. Yang, T., Huang, Q. and Li, S. (2016), "Three-dimensional elasticity solutions for sound radiation of functionally graded materials plates considering state space method", Shock Vib., 2016(Article ID 1403856), 15. https://doi.org/10.1155/2016/1403856. 
  79. Yang, T., Zheng, W., Huang, Q. and Li, S. (2016a), "Sound radiation of functionally graded materials plates in thermal environment", Compos. Struct., 144, 165-176. https://doi.org/10.1016/j.compstruct.2016.02.065. 
  80. Yang, T., Zheng, W., Huang, Q. and Li, S. (2016b), "Sound radiation of functionally graded materials plates in thermal environment", Compos. Struct., 144, 165-176. https://doi.org/10.1016/j.compstruct.2016.02.065. 
  81. Zaitoun, M.W., Chikh, A., Tounsi, A., Al-Osta, M.A., Sharif, A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2022), "Influence of the visco-Pasternak foundation parameters on the buckling behavior of a sandwich functional graded ceramic-metal plate in a hygrothermal environment", Thin-Wall. Struct., 170, 108549. https://doi.org/https://doi.org/10.1016/j.tws.2021.108549. 
  82. Zerrouki, R., Karas, A., Zidour, M., Bousahla, A.A., Tounsi, A., Bourada, F. and Mahmoud, S.R. (2021), "Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam", Struct. Eng. Mech., 78(2), 117-124. https://doi.org/https://doi.org/10.12989/sem.2021.78.2.117. 
  83. Zhang, D.G. and Zhou, Y.H. (2008), "A theoretical analysis of FGM thin plates based on physical neutral surface", Comput. Mate. Sci., 44(2), 716-720. https://doi.org/10.1016/j.commatsci.2008.05.016. 
  84. Zhou, K., Lin, Z., Huang, X. and Hua, H. (2019), "Vibration and sound radiation analysis of temperature-dependent porous functionally graded material plates with general boundary conditions", Appl. Acoustics, 154, 236-250. https://doi.org/10.1016/j.apacoust.2019.05.003. 
  85. Zhou, K., Su, J. and Hua, H. (2018), "Closed form solutions for vibration and sound radiation of orthotropic plates under thermal environment", J. Sound Vib., 18(07), 1850098. https://doi.org/10.1142/S0219455418500980.