DOI QR코드

DOI QR Code

Seismic behavior of thin-walled CFST pier-to-base connections with tube confined RC encasement

  • Xuanding Wang (School of Civil Engineering, Chongqing University) ;
  • Yue Liao (School of Civil Engineering, Chongqing University) ;
  • Jiepeng Liu (School of Civil Engineering, Chongqing University) ;
  • Ligui Yang (State Key Laboratory of Mountain Bridge and Tunnel Engineering, Chongqing Jiaotong University) ;
  • Xuhong Zhou (School of Civil Engineering, Chongqing University)
  • Received : 2022.11.28
  • Accepted : 2023.11.07
  • Published : 2024.01.25

Abstract

Concrete-filled steel tubes (CFSTs) nowadays are widely used as the main parts of momentous structures, and its connection has gained increasing attention as the complexity in configuration and load transfer mechanism. This paper proposes a novel CFST pier-to-footing incorporating tube-confined RC encasement. Such an innovative approach offers several benefits, including expedited on-site assembly, effective confinement, and collision resistance and corrosion resistance. The seismic behavior of such CFST pier-to-footing connection was studied by testing eight specimens under quasi-static cyclic lateral load. In the experimental research, the influences on the seismic behavior and the order of plastic hinge formation were discussed in detail by changing the footing height, axial compression ratio, number and length of anchored bars, and type of confining tube. All the specimens showed sufficient ductility and energy dissipation, without significant strength degradation. There is no obvious failure in the confined footing, while local buckling can be found in the critical section of the pier. It suggests that the footing provides satisfactory strength protection for the connection.

Keywords

Acknowledgement

The research described in this paper was financially supported by the National Natural Science Foundation of China (Grant number: 51908086, and U20A20312), both of which are gratefully acknowledged.

References

  1. ACI 374.2R-13 (2013), Guide for Testing Reinforced Concrete Structural Elements under Slowly Applied Simulated Seismic Loads, American Concrete Institute, United States.
  2. Afaghi-Darabi A. and Abdollahzadeh G. (2019), "Effect of cooling rate on the post-fire behavior of CFST column", Comput. Concrete, 23(4), 281-294. https://doi.org/10.12989/cac.2019.23.4.281.
  3. ASTM-A370-17a (2017), Standard Test Methods and Definitions for Mechanical Testing of Steel Products, American Society for Testing and Materials, United States.
  4. Biddah A., Ghobarah A. and Aziz T.S. (1997), "Upgrading of nonductile reinforced concrete frame connections", J. Struct. Eng., 123, 1001-10. https://ascelibrary.org/doi/10.1061/(ASCE)07339445(1997)123:8(1001).
  5. Bruneau M. and Marson J. (2004), "Seismic design of concrete-filled circular steel bridge piers", J. Bridge Eng., 9(1), 24-34. https://doi.org/10.1061/(ASCE)1084-0702(2004)9:1(24)
  6. Chacon R., Mirambell E. and Real E. (2013), "Strength and ductility of concrete-filled tubular piers of integral bridges", Eng. Struct., 46, 234-246. https://doi.org/10.1016/j.engstruct.2012.07.026.
  7. Chen G.C., Huang H.D. and Xiang Z.F. (2021), "Experimental Investigation on the Anticollision Performance of Corrugated Steel-Reinforced Composites for Bridge Piers", Shock Vib., 2021(2), 5847559. https://doi.org/10.1155/2021/5847559.
  8. Chen, Z., Zhou, J., Li, Z., Wang, X. and Zhou, X. (2020), "Seismic behavior of concrete-filled circular steel tubular column-reinforced concrete beam frames with recycled aggregate concrete. Appl. Sci., 10(7), 2609. https://doi.org/10.3390/app10072609.
  9. Cheng H., Li H.N., Wang D.S., Sun Z.G., Li G.Q. and Jin J.N. (2016), "Research on the influencing factors for residual displacements of RC bridge columns subjected to earthquake loading", Bull. Earthq. Eng., 14(8), 2229-2257. https://doi.org/10.1007/s10518-016-9902-y.
  10. Eurocode 4 (2004), Design of Composite Steel and Concrete Structures-Part 1-1: General Rules and Rules for Buildings, European Committee for Standardization, BS EN 1994-1-1: 2004.
  11. Fang Y., Wang Y.Y., Elchalakani M. and Yang H. (2020), "Experimental investigation on concrete-filled corrugated steel tubular column under constant axial load and cyclic load", Eng. Struct., 248(1), 113245. https://doi.org/10.1016/j.engstruct.2021.113245.
  12. Farzad M., Sadeghnejad A., Rastkar S., Moshkforoush A. and Azizinamini A. (2020), "A theoretical analysis of mechanical and durability enhancement of circular reinforced concrete columns repaired with UHPC", Eng. Struct., 209,109928. https://doi.org/10.1016/j.engstruct.2019.109928.
  13. Feng R. and Young B (2009), "Behaviour of concrete-filled stainless steel tubular X-joints subjected to compression", Thin-Wall. Struct., 47, 365-374. https://doi.org/10.1016/j.tws.2008.09.006.
  14. GB50010 (2010), Code for Design of Concrete Structures, China Architecture and Building Press, Beijing, China.
  15. Geng Y., Wang Y.Y. and Chen J. (2015), "Time-dependent behavior of recycled aggregate concrete-filled steel tubular columns", J. Struct. Eng., 141. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001241.
  16. Giakoumelis G. and Lam D. (2004), "Axial capacity of circular concrete-filled tube columns", J. Constr. Steel Res., 60(7), 1049-1068. https://doi.org/10.1016/j.jcsr.2003.10.001.
  17. Goto Y., Ebisawa T., Obata M, Li J.Z. and Xu Y. (2017), "Ultimate behavior of steel and CFT piers in two-span continuous elevated-girder bridge models tested by shake-table excitations", J. Bridge. Eng., 22(5), 04017001. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001021.
  18. Han L.H. (2002), "Tests on stub columns of concrete-filled RHS sections", Constr. Steel Res., 58, 353-372. https://doi.org/10.1016/S0143-974X(01)00059-1.
  19. Han L.H., Hou C.C. and Xu W. (2018), "Seismic performance of concrete-encased column base for hexagonal concrete-filled steel tube: numerical study", J. Constr. Steel Res., 149, 225-238. https://doi.org/10.1016/j.jcsr.2018.07.006.
  20. Han R., Zhao H., Sun Y.P., Ju N.P. and Zhao S.C. (2022), "Cyclic behavior of concrete-filled square tubular columns with stiffened plastic hinge region", J. Constr. Steel Res., 190, 107152. https://doi.org/10.1016/j.jcsr.2022.107152. http://refhub.elsevier.com/S0141-0296(21)01369-9/h0395. https://doi.org/10.1061/(ASCE)1084-0702(2004)9:1(24).
  21. Hu C.M., Han L.H. and Hou C.C. (2018), "Concrete-encased CFST members with circular sections under laterally low velocity impact: Analytical behaviour", J. Constr. Steel Res., 146, 135-154. https://doi.org/10.1016/j.jcsr.2018.03.017.
  22. Huang Y., Briseghella B., Zordan T. and Wu Q.X. (2014), "Chen B.C. Shaking table tests for the evaluation of the seismic performance of an innovative lightweight bridge with CFST composite truss girder and lattice pier", Eng. Struct., 75, 73-86. https://doi.org/10.1016/j.engstruct.2014.05.039.
  23. Ji X.D., Kang H.Z., Chen X.C. and Qian J. (2014), "Seismic behavior and strength capacity of steel tube-reinforced concrete composite columns", Earthq. Eng. Struct. D., 43(4), 487-505. https://doi.org/10.1002/eqe.2354.
  24. Johansson M. (2003), "Composite action in connection regions of concrete-filled steel tube columns", Steel Compos. Struct., 3(1), 47-64. https://dx.doi.org/10.12989/scs.2003.3.1.047.
  25. Kannan, S., Uras, H.M. and Aktan, H. M. (1995), "Active control of building seismic response by energy dissipation", Soil Dyn. Earthq. Eng., 24(5), 747-759. https://doi.org/10.1002/eqe.4290240510.
  26. Kashani, M.M., Barmi, A.K. and Malinova, V.S. (2015), "Influence of inelastic buckling on low-cycle fatigue degradation of reinforcing bars", Constr. Build. Mater., 94, 644-655. https://doi.org/10.1016/j.conbuildmat.2015.07.102.
  27. Li D.X., Wang J., Uy B., Aslani F. and Patel V. (2018), "Analysis and design of demountable circular CFST column-base connections", Steel Compos. Struct., 28(5), 559-571. https://doi.org/10.12989/scs.2018.28.5.559.
  28. Liu C.Y., Wang Y.Y., Wang W. and Wu X.R. (2014), "Seismic performance and collapse prevention of concrete-filled thin-walled steel tubular arches", Thin-Wall. Struct., 80, 91-102. https://doi.org/10.1016/j.tws.2014.03.005.
  29. Lu J.Y., Wang Y.H. and Zhai X.M. (2021), "Response of flat steelconcrete-corrugated steel sandwich panel under drop-weight impact load by a hemi-spherical head", J. Build. Eng., 44, 102890. https://doi.org/10.1016/j.jobe.2021.102890.
  30. Ma D.Y., Han L.H., Zhao X.L. and Yang W.B. (2020), "Seismic performance of the concrete-encased CFST column to RC beam joints: Analytical study", Steel Compos. Struct., 36 (5), 533-551. https://doi.org/10.12989/scs.2020.36.5.533.
  31. Marson J. and Bruneau M. (2004), "Cyclic testing of concrete-filled circular steel bridge piers having encased fixed-based detail", J. Bridge Eng., 9(1), 14-23. https://ascelibrary.org/doi/10.1061/(ASCE)1084-0702(2004)9:1(14).
  32. Montejo L.A., Gonzalez-Roman L.A. and Kowalsky M.J. (2012), "Seismic performance evaluation of reinforced concrete-filled steel tube pile/column bridge bents", J. Earthq. Eng., 16(3), 401-424. https://doi.org/10.1080/13632469.2011.614678.
  33. Morino, S., Kawaguchi, J., Tsuji, A. and Kadoya, H. (2003), "Strength and stiffness of CFT semi-embedded type column base". Proceedings of the International Conference on Advances in Structure, Sydney, Australia, 3-14.
  34. Nie, J.G. and Liao, Y.B (2009), "Experiments of four-legged concrete-filled steel tubular laced columns subjected to axial loads", J. Tsinghua Univ. (Sci &Tech), 49(12), 1919-1924. https://doi.org/10.16511/j.cnki.qhdxxb.2009.12.022.
  35. Park, R. (1988), "Ductility evaluation from laboratory and analytical testing", Proceedings of the 9th World Conference on Earthquake Engineering, Tokyo-Kyoto, Japan, 8, 605-616.
  36. Pugliese, F. and Di Sarno, L. (2022), "Probabilistic structural performance of RC frames with corroded smooth bars subjected to near- and far-field ground motions", J. Build. Eng., 49, 104008. https://doi.org/10.1016/j.jobe.2022.104008.
  37. Rehmat, S., Sadeghnejad, A., Mantawy, I.M. and Azizinamini, A. (2021), "Experimental study on concrete filled steel tubes to footing connection using ultra-high performance concrete", Eng. Struct., 242, 112540. https://doi.org/10.1016/j.engstruct.2021.112540.
  38. Safdar, M., Matsumoto, T. and Kakumam K. (2016), "Flexural behavior of reinforced concrete beams repaired with ultra-high performance fiber reinforced concrete (UHPFRC)", Compos. Struct., 157, 448-460. https://doi.org/10.1016/j.compstruct.2016.09.010.
  39. Stephens, M.T., Asce, S.M., Berg, L.M. and Roeder, C.W. (2016b), "Seismic CFST column-to-precast cap beam connections for accelerated bridge construction", J. Struct. Eng., 142(9), 04016049. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001505.
  40. Stephens, M.T., Lehman, D.E. and Roeder, C.W. (2016a), "Design of CFST column-to-foundation/cap beam connections for moderate and high seismic regions", Eng. Struct., 122, 323-337. https://doi.org/10.1016/j.engstruct.2016.05.023.
  41. Tao, Z., Han, L.H. and Zhao, X.L. (2004), "Behaviour of concrete-filled double skin (CHS inner and CHS outer) steel tubular stub columns and beam-columns", J. Constr. Steel Res., 60(8), 1129-1158. https://doi.org/10.1016/j.jcsr.2003.11.008.
  42. Tian, H., Zhou, Z., Zhang, Y. and Wei, Y. (2020), "Axial behavior of reinforced concrete column with ultra-high performance concrete stay-in-place formwork", Eng. Struct., 210, 110403.https://doi.org/10.1016/j.engstruct.2020.110403.
  43. Wang X.D., Xu T.X., Liu J.P., Wang S.N. and Chen F. (2020), "Seismic performance of high-strength anchor rebar column-foundation connection for CFST", J. Constr. Steel Res., 173, 106269. https://doi.org/10.1016/j.jcsr.2020.106269.
  44. Wang Y.Y., Yang L.G., Yang H. and Liu C.Y. (2019), "Behavior of concrete-filled corrugated steel tubes under axial compression", Eng. Struct., 183, 475-95. https://doi.org/10.1016/j.engstruct.2018.12.093.
  45. Wang, X.D. and Liu, J.P. (2017), "Behavior and design of slender square tubed-reinforced-concrete columns subjected to eccentric compression", Thin-Wall. Struct., 120, 153-160. https://doi.org/10.1016/j.tws.2017.08.023.
  46. Wang, Z.B., Han, L.H., Li, W. and Tao, Z. (2016), "Seismic performance of concrete-encased CFST piers: experimental study", J. Bridge Eng., 21(4), 04015072. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000841.
  47. Xu, T.X., Zhang, S.M., Liu J.P. and Wang X.D. (2021), "Design method of concrete filled thin-walled steel tube column-foundation connections", Eng. Struct., 246(1), 113033. https://doi.org/10.1016/j.engstruct.2021.113033.
  48. Xue, J.Y., Zhou, C.F. and Lin, J.P. (2018), "Seismic performance of mixed column composed of square CFST column and circular RC column in Chinese archaized buildings", Steel Compos. Struct., 29(4), 451-464. https://doi.org/10.12989/scs.2018.29.4.451.
  49. Yang, L.G., Wang, Y.Y. and Richard Liew, J.Y. (2020b), "Compression-bending strength model for corrugated steel tube confined reinforced concrete section", J. Struct. Eng., 147(11). https://doi.org/10.1061/(ASCE)ST.1943-541X.0003148.
  50. Yang, L.G., Wang, Y.Y., Elchalakani, M. and Fang, Y. (2020a), "Experimental behavior of concrete-filled corrugated steel tubular short columns under eccentric compression and nonuniform confinement", Eng. Struct., 220, 111009. https://doi.org/10.1016/j.engstruct.2020.111009.
  51. Zhang, W., Chen, Z.H., Xiong, Q.Q., Zhou, T., Rong, X. and Du, Y.S. (2018), "Experimental seismic behaviour of L-CFST column to H-beam connections", Steel Compos. Struct., 26(6), 793-808. https://doi.org/10.12989/scs.2018.26.6.793.