Acknowledgement
This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. RS-2022-00165694).
References
- Shen, D., Karbowski, D., Rousseau, A.: A minimum principle-based algorithm for energy-efficient eco-driving of electric vehicles in various traffic and road conditions. IEEE Trans. Intell. Veh. 5(4), 725-737 (2020) https://doi.org/10.1109/TIV.2020.3011055
- Husain, I., Ozpineci, B., Islam, M.S., Gurpinar, E., Su, G.-J., Yu, W., Chowdhury, S., Xue, L.: Electric drive technology trends challenges and opportunities for future electric vehicles. Proc. IEEE 109(6), 1039-1059 (2021) https://doi.org/10.1109/JPROC.2020.3046112
- Ou, C.-H., Liang, H., Zhuang, W.: Investigating wireless charging and mobility of electric vehicles on electricity market. IEEE Trans. Ind. Electron. 62(5), 3123-3133 (2015) https://doi.org/10.1109/TIE.2014.2376913
- Dizqah, A.M., Lenzo, B., Sorniotti, A., Gruber, P., Fallah, S., Smet, J.D.: A fast and parametric torque distribution strategy for four-wheel-drive energy-efficient electric vehicles. IEEE Trans. Ind. Electron. 63(7), 4367-4376 (2016) https://doi.org/10.1109/TIE.2016.2540584
- Liang, Y., Ding, Z., Ding, T., Lee, W.-J.: Mobility-aware charging scheduling for shared on-demand electric vehicle feet using deep reinforcement learning. IEEE Trans. Smart Grid 12(2), 1380-1393 (2021) https://doi.org/10.1109/TSG.2020.3025082
- Renaudin, V., Dommes, A., Guilbot, M.: Engineering, human, and legal challenges of navigation systems for personal mobility. IEEE Trans. Intell. Transp. Syst. 18(1), 177-191 (2017) https://doi.org/10.1109/TITS.2016.2563481
- Roh, D.H., Lee, J.Y.: Augmented reality-based navigation using deep learning-based pedestrian and personal mobility user recognition-a comparative evaluation for driving assistance. IEEE Access 11, 62200-62211 (2023) https://doi.org/10.1109/ACCESS.2023.3286872
- Paez-Granados, D.F., Kadone, H., Hassan, M., Chen, Y., Suzuki, K.: Personal mobility with synchronous trunk-knee passive exoskeleton: optimizing human-robot energy transfer. IEEE/ASME Trans. Mechatron. 27(5), 3613-3623 (2022) https://doi.org/10.1109/TMECH.2021.3135453
- Mai, R., Chen, Y., Li, Y., Zhang, Y., Cao, G., He, Z.: Inductive power transfer for massive electric bicycles charging based on hybrid topology switching with a single inverter. IEEE Trans. Power Electron. 32(8), 5897-5906 (2017) https://doi.org/10.1109/TPEL.2017.2654360
- Chen, Y., Kou, Z., Zhang, Y., He, Z., Mai, R., Cao, G.: Hybrid topology with configurable charge current and charge voltage output-based WPT charger for massive electric bicycles. IEEE J. Emerg. Sel. Topics Power Electron. 6(3), 1581-1594 (2018) https://doi.org/10.1109/JESTPE.2017.2782269
- Liao, C.-C., Huang, M.-S., Li, Z.-F., Lin, F.-J., Wu, W.-T.: Simulation-assisted design of a bidirectional wireless power transfer with circular sandwich coils for E-bike sharing system. IEEE Access 8, 110003-110017 (2020) https://doi.org/10.1109/ACCESS.2020.3000564
- Lin, J., Schofeld, N., Emadi, A.: External-rotor 6-10 switched reluctance motor for an electric bicycle. IEEE Trans. Transp. Electrific. 1(4), 348-356 (2015) https://doi.org/10.1109/TTE.2015.2502543
- Nakajima, S.: A new personal mobility vehicle for daily life: improvements on a new RT-mover that enable greater mobility are showcased at the cybathlon. EEE Robot. Autom. Mag. 24(4), 37-48 (2017) https://doi.org/10.1109/MRA.2017.2711603
- Lim, S.-K., Lee, H.-S., Cha, H.-R., Park, S.-J.: Multi-level DC/DC converter for E-mobility charging stations. IEEE Access 8, 48774-48783 (2020) https://doi.org/10.1109/ACCESS.2020.2977663
- Bak, Y.: Hardware-simulator development and implementation of battery charger for personal mobility devices. J. Power Electron. 23(2), 211-218 (2023) https://doi.org/10.1007/s43236-022-00580-1
- Kim, J., Choi, H., Won, C.-Y.: New modulated carrier controlled PFC boost converter. IEEE Trans. Power Electron. 33(6), 4772-4782 (2018) https://doi.org/10.1109/TPEL.2017.2737458
- Baek, J., Kim, J.-K., Lee, J.-B., Park, M.-H., Moon, G.-W.: A new standby structure integrated with boost PFC converter for server power supply. IEEE Trans. Power Electron. 34(6), 5283-5293 (2019) https://doi.org/10.1109/TPEL.2018.2871138
- Schrittwieser, L., Leibl, M., Kolar, J.W.: 99% efcient isolated three-phase matrix-type DAB buck-boost PFC rectifier. IEEE Trans. Power Electron. 35(1), 138-157 (2020) https://doi.org/10.1109/TPEL.2019.2914488
- Shen, Y., Zhao, W., Chen, Z., Cai, C.: Full-bridge LLC resonant converter with series-parallel connected transformers for electric vehicle on-board charger. IEEE Access 6, 13490-13500 (2018) https://doi.org/10.1109/ACCESS.2018.2811760
- Fei, C., Gadelrab, R., Li, Q., Lee, F.C.: High-frequency three-phase interleaved LLC resonant converter with GaN devices and integrated planar magnetics. IEEE J. Emerg. Sel. Topics Power Electron. 7(2), 653-663 (2019) https://doi.org/10.1109/JESTPE.2019.2891317
- Ta, L.A.D., Dao, N.D., Lee, D.-C.: High-efficiency hybrid LLC resonant converter for on-board chargers of plug-in electric vehicles. IEEE Trans. Power Electron. 35(8), 8324-8334 (2020) https://doi.org/10.1109/TPEL.2020.2968084
- Li, Y., Vilathgamuwa, M., Wikner, E., Wei, Z., Zhang, X., Thiringer, T., Wik, T., Zou, C.: Electrochemical model-based fast charging: physical constraint-triggered PI control. IEEE Trans. Energy Convers. 36(4), 3208-3220 (2021) https://doi.org/10.1109/TEC.2021.3065983
- Liu, J., Liu, Z., Su, H.: Passivity-based PI control for receiver side of dynamic wireless charging system in electric vehicles. IEEE Trans. Ind. Electron. 69(1), 783-794 (2022) https://doi.org/10.1109/TIE.2021.3050350
- Haque, M.R., Salam, K.M.A., Razzak, M.A.: A Modifed PIcontroller based high current density DC-DC converter for EV charging applications. IEEE Access 11, 27246-27266 (2023) https://doi.org/10.1109/ACCESS.2023.3258181