DOI QR코드

DOI QR Code

Dynamic characteristic improvement of battery chargers for personal mobility devices using sliding mode control

  • Junhyeok Choi (Department of Electrical Energy Engineering, Keimyung University) ;
  • Yeongsu Bak (Department of Electrical Energy Engineering, Keimyung University)
  • Received : 2023.09.23
  • Accepted : 2023.10.23
  • Published : 2024.01.20

Abstract

This paper proposes a control method for improving the dynamic characteristic of battery chargers for personal mobility devices (PMDs) using sliding mode control (SMC). Various types of PMDs have batteries with distinct voltages. Therefore, research on battery chargers for PMDs that can be applied to various types of PMD with distinct voltages has been actively pursued. In battery chargers for PMDs, the output voltage can usually be controlled by a proportional-integral (PI) controller. However, increasing the PI controller gain is necessary to enhance the dynamic characteristic of the output voltage. It results in an overshoot that adversely affects the stability of the battery charger. Therefore, in this paper, a control method using sliding mode control (SMC) is presented for improving the dynamic characteristic without overshoot in the output voltage of battery chargers for PMDs. The validity of the proposed control method is verified by the simulation and experimental results.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. RS-2022-00165694).

References

  1. Shen, D., Karbowski, D., Rousseau, A.: A minimum principle-based algorithm for energy-efficient eco-driving of electric vehicles in various traffic and road conditions. IEEE Trans. Intell. Veh. 5(4), 725-737 (2020) https://doi.org/10.1109/TIV.2020.3011055
  2. Husain, I., Ozpineci, B., Islam, M.S., Gurpinar, E., Su, G.-J., Yu, W., Chowdhury, S., Xue, L.: Electric drive technology trends challenges and opportunities for future electric vehicles. Proc. IEEE 109(6), 1039-1059 (2021) https://doi.org/10.1109/JPROC.2020.3046112
  3. Ou, C.-H., Liang, H., Zhuang, W.: Investigating wireless charging and mobility of electric vehicles on electricity market. IEEE Trans. Ind. Electron. 62(5), 3123-3133 (2015) https://doi.org/10.1109/TIE.2014.2376913
  4. Dizqah, A.M., Lenzo, B., Sorniotti, A., Gruber, P., Fallah, S., Smet, J.D.: A fast and parametric torque distribution strategy for four-wheel-drive energy-efficient electric vehicles. IEEE Trans. Ind. Electron. 63(7), 4367-4376 (2016) https://doi.org/10.1109/TIE.2016.2540584
  5. Liang, Y., Ding, Z., Ding, T., Lee, W.-J.: Mobility-aware charging scheduling for shared on-demand electric vehicle feet using deep reinforcement learning. IEEE Trans. Smart Grid 12(2), 1380-1393 (2021) https://doi.org/10.1109/TSG.2020.3025082
  6. Renaudin, V., Dommes, A., Guilbot, M.: Engineering, human, and legal challenges of navigation systems for personal mobility. IEEE Trans. Intell. Transp. Syst. 18(1), 177-191 (2017) https://doi.org/10.1109/TITS.2016.2563481
  7. Roh, D.H., Lee, J.Y.: Augmented reality-based navigation using deep learning-based pedestrian and personal mobility user recognition-a comparative evaluation for driving assistance. IEEE Access 11, 62200-62211 (2023) https://doi.org/10.1109/ACCESS.2023.3286872
  8. Paez-Granados, D.F., Kadone, H., Hassan, M., Chen, Y., Suzuki, K.: Personal mobility with synchronous trunk-knee passive exoskeleton: optimizing human-robot energy transfer. IEEE/ASME Trans. Mechatron. 27(5), 3613-3623 (2022) https://doi.org/10.1109/TMECH.2021.3135453
  9. Mai, R., Chen, Y., Li, Y., Zhang, Y., Cao, G., He, Z.: Inductive power transfer for massive electric bicycles charging based on hybrid topology switching with a single inverter. IEEE Trans. Power Electron. 32(8), 5897-5906 (2017) https://doi.org/10.1109/TPEL.2017.2654360
  10. Chen, Y., Kou, Z., Zhang, Y., He, Z., Mai, R., Cao, G.: Hybrid topology with configurable charge current and charge voltage output-based WPT charger for massive electric bicycles. IEEE J. Emerg. Sel. Topics Power Electron. 6(3), 1581-1594 (2018) https://doi.org/10.1109/JESTPE.2017.2782269
  11. Liao, C.-C., Huang, M.-S., Li, Z.-F., Lin, F.-J., Wu, W.-T.: Simulation-assisted design of a bidirectional wireless power transfer with circular sandwich coils for E-bike sharing system. IEEE Access 8, 110003-110017 (2020) https://doi.org/10.1109/ACCESS.2020.3000564
  12. Lin, J., Schofeld, N., Emadi, A.: External-rotor 6-10 switched reluctance motor for an electric bicycle. IEEE Trans. Transp. Electrific. 1(4), 348-356 (2015) https://doi.org/10.1109/TTE.2015.2502543
  13. Nakajima, S.: A new personal mobility vehicle for daily life: improvements on a new RT-mover that enable greater mobility are showcased at the cybathlon. EEE Robot. Autom. Mag. 24(4), 37-48 (2017) https://doi.org/10.1109/MRA.2017.2711603
  14. Lim, S.-K., Lee, H.-S., Cha, H.-R., Park, S.-J.: Multi-level DC/DC converter for E-mobility charging stations. IEEE Access 8, 48774-48783 (2020) https://doi.org/10.1109/ACCESS.2020.2977663
  15. Bak, Y.: Hardware-simulator development and implementation of battery charger for personal mobility devices. J. Power Electron. 23(2), 211-218 (2023) https://doi.org/10.1007/s43236-022-00580-1
  16. Kim, J., Choi, H., Won, C.-Y.: New modulated carrier controlled PFC boost converter. IEEE Trans. Power Electron. 33(6), 4772-4782 (2018) https://doi.org/10.1109/TPEL.2017.2737458
  17. Baek, J., Kim, J.-K., Lee, J.-B., Park, M.-H., Moon, G.-W.: A new standby structure integrated with boost PFC converter for server power supply. IEEE Trans. Power Electron. 34(6), 5283-5293 (2019) https://doi.org/10.1109/TPEL.2018.2871138
  18. Schrittwieser, L., Leibl, M., Kolar, J.W.: 99% efcient isolated three-phase matrix-type DAB buck-boost PFC rectifier. IEEE Trans. Power Electron. 35(1), 138-157 (2020) https://doi.org/10.1109/TPEL.2019.2914488
  19. Shen, Y., Zhao, W., Chen, Z., Cai, C.: Full-bridge LLC resonant converter with series-parallel connected transformers for electric vehicle on-board charger. IEEE Access 6, 13490-13500 (2018) https://doi.org/10.1109/ACCESS.2018.2811760
  20. Fei, C., Gadelrab, R., Li, Q., Lee, F.C.: High-frequency three-phase interleaved LLC resonant converter with GaN devices and integrated planar magnetics. IEEE J. Emerg. Sel. Topics Power Electron. 7(2), 653-663 (2019) https://doi.org/10.1109/JESTPE.2019.2891317
  21. Ta, L.A.D., Dao, N.D., Lee, D.-C.: High-efficiency hybrid LLC resonant converter for on-board chargers of plug-in electric vehicles. IEEE Trans. Power Electron. 35(8), 8324-8334 (2020) https://doi.org/10.1109/TPEL.2020.2968084
  22. Li, Y., Vilathgamuwa, M., Wikner, E., Wei, Z., Zhang, X., Thiringer, T., Wik, T., Zou, C.: Electrochemical model-based fast charging: physical constraint-triggered PI control. IEEE Trans. Energy Convers. 36(4), 3208-3220 (2021) https://doi.org/10.1109/TEC.2021.3065983
  23. Liu, J., Liu, Z., Su, H.: Passivity-based PI control for receiver side of dynamic wireless charging system in electric vehicles. IEEE Trans. Ind. Electron. 69(1), 783-794 (2022) https://doi.org/10.1109/TIE.2021.3050350
  24. Haque, M.R., Salam, K.M.A., Razzak, M.A.: A Modifed PIcontroller based high current density DC-DC converter for EV charging applications. IEEE Access 11, 27246-27266 (2023) https://doi.org/10.1109/ACCESS.2023.3258181