DOI QR코드

DOI QR Code

Complete loss distribution model of GaN HEMTs considering the influence of parasitic parameters

  • Shengwei Gao (School of Electrical Engineering, Tiangong University) ;
  • Jinrui Tian (School of Electrical Engineering, Tiangong University) ;
  • Xiaoyu Fu (School of Electrical Engineering, Tiangong University) ;
  • Yongxiao Li (School of Electrical Engineering, Tiangong University) ;
  • Bo Wang (School of Electrical Engineering, Tiangong University) ;
  • Lixia Zhao (School of Electrical Engineering, Tiangong University)
  • Received : 2023.05.08
  • Accepted : 2023.09.28
  • Published : 2024.01.20

Abstract

When compared with Si-based devices, Gallium Nitride High Electron Mobility Transistors (GaN HEMTs) possess the advantages of lower junction-to-case thermal resistance, smaller on-state resistance, faster switching velocity, and higher switching frequency. These advantages make them a promising power semiconductor device. However, with the enhancement of switching frequencies, the influence of parasitic parameters on switching ringing and the losses of GaN HEMTs are increasingly severe. Thus, it is necessary to predict the loss distribution by establishing an accurate loss model of the switching process. On the premise of considering parasitic inductance, nonlinear junction capacitance, and reverse transfer characteristics, this article proposes a precise switching loss model of GaN HEMTs to predict the loss distribution in the switching process. In addition, it verifies results based on the double pulse test (DPT) circuit, which validates the accuracy of the proposed model. Ultimately, based on the above-mentioned loss model, this article discussed the influence of parasitic capacitance and inductance on the output capacitance loss (Eqoss), the reverse conduction loss (ESD), the opening V-I overlap loss (Eopen), the closing V-I overlap loss (Eclose), and the total loss (Etotal). Then, this article produces an optimizing method to enhance the conversion efficiency of GaN HEMTs in accordance with laboratory findings.

Keywords

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant (51807139) and the National Natural Science Foundation of China (NSFC) under Grant (11974343).

References

  1. Ruiliang, X., Hanxing, et al.: An analytical model for false turn-on evaluation of high-voltage enhancement-mode GaN transistor in bridge-leg configuration. IEEE Trans. Power Electron. 32(8), 6416-6433 (2016) https://doi.org/10.1109/TPEL.2016.2618349
  2. Kazuhiro, U., Keisuke, et al.: A design guideline of parasitic inductance for preventing oscillatory false triggering of fast switching GaN-FET. IEEJ Trans. Electr. Electron. Eng. 11: S84-S90 (2016) https://doi.org/10.1002/tee.22339
  3. Hou, R., Shen, Y., Zhao, H., et al.: Power loss characterization and modeling for GaN-based hard-switching half-bridges considering dynamic on-state resistance. IEEE Trans. Transport. Electrif. 6(2), 540-553 (2020) https://doi.org/10.1109/TTE.2020.2989036
  4. Gareau, J., Hou, R., Emadi, A.: Review of loss distribution, analysis, and measurement techniques for GaN HEMTs. IEEE Trans. Power Electron. 35(7), 7405-7418 (2020) https://doi.org/10.1109/TPEL.2019.2954819
  5. Dong, M., Li, H., Yin, S., et al.: A post-processing technique based switching loss estimation method for GaN devices. IEEE Trans. Power Electron. (2020). https://doi.org/10.1109/TPEL.2020.3043801
  6. Yin, S., Liu, Y., Gu, Y., et al.: Automatic V-I Alignment for switching characterization of wide band gap power devices. In: 2018 1st Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia), (2018)
  7. Chen, J., Luo, Q., Huang, J., et al.: A complete switching analytical model of low-voltage eGaN HEMTs and its application in loss analysis. IEEE Trans. Ind. Electron. 67(2), 1615-1625 (2019) https://doi.org/10.1109/TIE.2019.2891466
  8. Huang, X., Li, Q., Liu, Z., et al.: Analytical loss model of high voltage GaN HEMT in Cascode configuration. IEEE Trans. Power Electron. 29(5), 2208-2219 (2014)
  9. Zhao, C., Wang, L., Zhang, F.: Effect of asymmetric layout and unequal junction temperature on current sharing of paralleled SiC MOSFETs with Kevin-source connection. IEEE Trans. Power Electron. 35(7): 7392-7404 (2019) https://doi.org/10.1109/TPEL.2019.2954716
  10. Hou, R., Lu, J., Chen, D.: Parasitic capacitance Eqoss loss mechanism, calculation, and measurement in hard-switching for GaN HEMTs. In: 919-924, (2018)
  11. Yan, D., Hang, L., He, Y., et al.: An accurate switching transient analytical model for GaN HEMT under the influence of nonlinear parameters. Energies 15, 2966 (2022)
  12. Zhang Z, Guo B, Wang F, et al. Impact of ringing on switching losses of wide band-gap devices in a phase-leg configuration. In: 2014 IEEE Applied Power Electronics Conference and Exposition-APEC 2014. IEEE, (2014)
  13. Zulauf, G., Wei, L., Surakitbovorn, K., et al." Output capacitance losses in 600 V GaN power semiconductors with large voltage swings at high- and very-high-frequencies. In: Wide Bandgap Power Devices & Applications. IEEE, (2017)
  14. GaN Systems Inc.: Gate Driver Circuit Design with GaNE-HEMTs, 2022. https://gansystems.com/design-center/applicationnote. Accessed 19 Oct 2023
  15. Shuai, S., Zhongkang, L., Xinling, T., Xiaoguang, W., Zhibin, Z.: A review of switching oscillation in wide band gap semiconductor devices. In: Proceedings of the CSEE:1-23[2023-07-02]. https://doi.org/10.13334/j.0258-8013.pcsee.230017
  16. Lu, J.L., Chen, D., Yushyna, L.: A high power-density and high efficiency insulated metal substrate based GaN HEMT power module. In: 2017 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, https://doi.org/10.1109/ECCE.2017.8096647 (2017)
  17. Sun, B.N., Jorgensen, K.L., Zhang, Z., Andersen, M.A.E.: Research of Power Loop Layout and Parasitic Inductance in GaN Transistor Implementation. IEEE Trans. Ind. Appl. (2021). https://doi.org/10.1109/TIA.2020.3048641