DOI QR코드

DOI QR Code

Remaining useful life prediction of circuit breaker operating mechanisms based on wavelet-enhanced dual-tree residual networks

  • Tailong Wu (College of Computer Science and Artificial Intelligence, Wenzhou University) ;
  • Yuan Yao (College of Mechanical and Electrical Engineering, Wenzhou University) ;
  • Zhihao Li (College of Mechanical and Electrical Engineering, Wenzhou University) ;
  • Binqiang Chen (School of Aerospace Engineering, Xiamen University) ;
  • Yue Wu (College of Urban Transportation and Logistics, Shenzhen Technology University) ;
  • Weifang Sun (College of Mechanical and Electrical Engineering, Wenzhou University)
  • Received : 2023.02.19
  • Accepted : 2023.09.23
  • Published : 2024.01.20

Abstract

The remaining useful life prediction of circuit breaker operating mechanisms is crucial for the condition-based maintenance of national power grids. To realize accurate remaining useful life prediction, a novel wavelet-enhanced dual-tree residual network is proposed in this paper. Through this wavelet transform, the time series is decomposed into two components (high frequency and low frequency). Then the two decomposed components are fed into two lightweight residual neural network structures. By concatenating the dual-tree features, the remaining useful life of a circuit breaker operating mechanism can be predicted. The proposed network is validated using a full-life cycle experiment of the circuit breaker operating mechanism. Results show that the proposed method has good capability when it comes to predicting the remaining useful life of the circuit breaker operating mechanism. Along with application in the construction of smart grids and green energy, it is expected that the proposed method has potential in running state prognostics of circuit breakers.

Keywords

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China under Grant 52205122 and Grant U1909217, in part by the Zhejiang Provincial Natural Science Foundation of China under Grant LQ21E050003, and in part by the Wenzhou Municipal Key Science and Research Program under Grant ZG2021027 and Grant ZG2021019.

References

  1. Yang, X., Wang, K., Kim, J., Park, K.: Artificial neural network-based FCS-MPC for three-level inverters. J. Power Electron. 22, 2158-2165 (2022) https://doi.org/10.1007/s43236-022-00535-6
  2. Liu, Z., Cui, Y., Wang, J., Yue, C., Agbodjan, Y.S., Yang, Y.: Multi-objective optimization of multi-energy complementary integrated energy systems considering load prediction and renewable energy production uncertainties. Energy 254, 124399 (2022)
  3. Sun, Y., Fan, Y., Hou, J.: Capacitor commutation type DC circuit breaker with fault character discrimination capability. J. Power Electron. (2023). https://doi.org/10.1007/s43236-023-00590-7. (In Press)
  4. Ye, X., Yan, J., Wang, Y., Wang, J., Geng, Y.: A novel U-Net and capsule network for few-shot high-voltage circuit breaker mechanical fault diagnosis. Measurement 199, 11527 (2022)
  5. Chen, F.: Dynamic response of spring-type operating mechanism for 69 kV SF6 gas insulated circuit breaker. Mech. Mach. Theory 38(2), 119-134 (2003) https://doi.org/10.1016/S0094-114X(02)00095-2
  6. Wan, K., Xi, Y., Wang, X.: Uniform deceleration design for stepped shock absorber in circuit breaker spring operating mechanism. J. Xi'an Jiaotong Univ. 56(01), 96-103 (2022). (In Chinese)
  7. Shi, Y., Zhou, Y., Ren, Y., Sun, W., Xiang, J.: A hybrid method for identifying the spring energy storage state of operating mechanism in circuit breakers. IEEE Trans. Instrum. Meas. 72, 3506809 (2023)
  8. Li, X., Ma, Y.: Remaining useful life prediction for lithium-ion battery using dynamic fractional brownian motion degradation model with long-term dependence. J. Power Electron. 22, 2069-2080 (2022) https://doi.org/10.1007/s43236-022-00507-w
  9. Sun, W., Zhou, Y., Xiang, J., Chen, B., Feng, W.: Hankel matrix-based condition monitoring of rolling element bearings: an enhanced framework for time-series analysis. IEEE Trans. Instrum. Meas. 70, 3512310 (2021)
  10. Wang, Y., Zhao, Y., Addepalli, S.: Remaining useful life prediction using deep learning approaches: a review. Procedia Manuf. 49, 81-88 (2020) https://doi.org/10.1016/j.promfg.2020.06.015
  11. Huang, J., Chen, B., Li, Y., Sun, W.: Fractal geometry of wavelet decomposition in mechanical signature analysis. Measurement 173(5), 108571 (2020)
  12. Zhang, Y., Sun, J., Zhang, J., Shen, H., She, Y., Chang, Y.: Health state assessment of bearing with feature enhancement and prediction error compensation strategy. Mech. Syst. Signal Process. 182, 109573 (2023)
  13. Cui, L., Wang, X., Wang, H., Ma, J.: Research on remaining useful life prediction of rolling element bearings based on time-varying Kalman filter. IEEE Trans. Instrum. Meas. 69(6), 2858-2867 (2020) https://doi.org/10.1109/TIM.2019.2924509
  14. Rai, A., Kim, J.: A novel health indicator based on the Lyapunov exponent, a probabilistic self-organizing map, and the Gini-Simpson index for calculating the RUL of bearings. Measurement 164, 108002 (2020)
  15. Pan, T., Chen, J., Ye, Z., Li, A.: A multi-head attention network with adaptive meta-transfer learning for RUL prediction of rocket engines. Reliab. Eng. Syst. Saf. 225, 108610 (2022)
  16. Cheng, H., Kong, X., Wang, Q., Ma, H., Yang, S., Chen, G.: Deep transfer learning based on dynamic domain adaptation for remaining useful life prediction under different working conditions. J. Intell. Manuf. 34, 587-613 (2023) https://doi.org/10.1007/s10845-021-01814-y
  17. Yu, W., Pi, D., Xie, L., Luo, Y.: Multiscale attentional residual neural network framework for remaining useful life prediction of bearings. Measurement 177, 109310 (2021)
  18. Li, P., Guo, P.: Diagnosis of interturn faults of voltage transformer using excitation current and phase difference. Eng. Fail. Anal. 134, 105979 (2022)
  19. Sun, W., Yi, J., Ma, G., Li, F., Li, X., Feng, G., Lu, C.: A vision-based method for dimensional in situ measurement of cooling holes in aero-engines during laser beam drilling process. Int. J. Adv. Manuf. Technol. 119, 3265-3277 (2022) https://doi.org/10.1007/s00170-021-08463-8
  20. Sun, W., Chen, B., Yao, B., Cao, X., Feng, W.: Complex wavelet enhanced shape from shading transform for estimating surface roughness of milled mechanical components. J. Mech. Sci. Technol. 31(2), 823-833 (2017) https://doi.org/10.1007/s12206-017-0134-0
  21. Tao, X., Ren, C., Wu, Y., Li, Q., Guo, W., Liu, R., He, Q., Zou, J.: Bearings fault detection using wavelet transform and generalized Gaussian density modeling. Measurement 155, 107557 (2020)
  22. Sharma, S., Tiwari, S., Singh, S.: Integrated approach based on flexible analytical wavelet transform and permutation entropy for fault detection in rotary machines. Measurement 169, 108389 (2021)
  23. Upadhya, M., Singh, A., Thakur, P., Nagata, E., Ferreira, D.: Mother wavelet selection method for voltage sag characterization and detection. Electr. Power Syst. Res. 211, 108246 (2022)
  24. Selesnick, I.W., Baraniuk, R.G., Kingsbury, N.C.: The dual-tree complex wavelet transform. IEEE Signal Process. Mag. 22, 123-151 (2005) https://doi.org/10.1109/MSP.2005.1550194
  25. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA (2016)
  26. Sun, W., Yao, B., Chen, B., He, Y., Cao, X., Zhou, T., Liu, H.: Noncontact surface roughness estimation using 2D complex wavelet enhanced ResNet for intelligent evaluation of milled metal surface quality. Appl. Sci. 8(3), 381 (2018)