DOI QR코드

DOI QR Code

Long-term effects of maxillary skeletal expander treatment on functional breathing

  • Andrew Combs (Center for Health Science, Section of Orthodontics, UCLA School of Dentistry) ;
  • Ney Paredes (Private Practice) ;
  • Ramon Dominguez-Mompell (Department of Orthodontics, Rey Juan Carlos University) ;
  • Martin Romero-Maroto (Department of Orthodontics, Rey Juan Carlos University) ;
  • Boshi Zhang (Center for Health Science, Section of Orthodontics, UCLA School of Dentistry) ;
  • Islam Elkenawy (Center for Health Science, Section of Orthodontics, UCLA School of Dentistry) ;
  • Luca Sfogliano (Center for Health Science, Section of Orthodontics, UCLA School of Dentistry) ;
  • Layla Fijany (Center for Health Science, Section of Orthodontics, UCLA School of Dentistry) ;
  • Ozge Colak (Department of Orthodontics, State University of New York) ;
  • Ben Wu (Orthodontic and Craniofacial Development Research, Forsyth Institute) ;
  • Won Moon (Orthodontic and Craniofacial Development Research, Forsyth Institute)
  • Received : 2023.04.21
  • Accepted : 2023.11.22
  • Published : 2024.01.25

Abstract

Objective: To investigate the long-term effects of maxillary skeletal expander (MSE) treatment on functional breathing. Methods: Objective measures of breathing, the peak nasal inspiratory flow (PNIF), and peak oral inspiratory flow (POIF), and subjective measures of breathing, the visual analog scale (VAS) and nasal obstruction symptom evaluation (NOSE) survey, were used to investigate the long-term effects of MSE in functional breathing. Seventeen patients, mean age 19.4 ± 3.9 years treated at the UCLA Orthodontics Clinic were assessed on their functional breathing at 3 timepoints: pre-expansion (T0), post-expansion (T1), and post-orthodontic treatment (T2). Results: Immediately after expansion (T1), all the objective functional breathing values were significantly increased in comparison to T0 (P < 0.05). The VAS total, VAS right and VAS left were significantly lower at T1 in comparison to T0 (P < 0.05). At 26.8 ± 3.9 months after MSE expansion (T2), PNIF total, PNIF right, PNIF left, and POIF were significantly higher when compared to T0 (P < 0.05). Also, VAS total, VAS right and VAS left were significantly lower at T2 when compared to T0 (P < 0.05). Additionally, there was a positive correlation between PNIF and the magnitude of expansion at anterior nasal spine and zygomaticomaxillary point (ZMA). There was a positive correlation between total VAS and the magnitude of expansion at the ZMA. There were no significant changes for the NOSE subjective breathing measurement at all time comparisons. Conclusions: Overall, MSE treatment produces an increased objective and subjective airway improvement that continues to remain stable in the long-term post expansion.

Keywords

References

  1. Betts NJ, Vanarsdall RL, Barber HD, Higgins-Barber K, Fonseca RJ. Diagnosis and treatment of transverse maxillary deficiency. Int J Adult Orthodon Orthognath Surg 1995;10:75-96. https://pubmed.ncbi.nlm.nih.gov/9082002/
  2. Brunetto DP, Sant'Anna EF, Machado AW, Moon W. Non-surgical treatment of transverse deficiency in adults using Microimplant-assisted Rapid Palatal Expansion (MARPE). Dental Press J Orthod 2017;22:110-25. https://doi.org/10.1590/2177-6709.22.1.110-125.sar
  3. da Silva Filho OG, Santamaria M Jr, Capelozza Filho L. Epidemiology of posterior crossbite in the primary dentition. J Clin Pediatr Dent 2007;32:73-8. https://doi.org/10.17796/jcpd.32.1.h53g027713432102
  4. McNamara JA Jr, Lione R, Franchi L, Angelieri F, Cevidanes LH, Darendeliler MA, et al. The role of rapid maxillary expansion in the promotion of oral and general health. Prog Orthod 2015;16:33. https://doi.org/10.1186/s40510-015-0105-x
  5. Pereira-Filho VA, Monnazzi MS, Gabrielli MA, Spin-Neto R, Watanabe ER, Gimenez CM, et al. Volumetric upper airway assessment in patients with transverse maxillary deficiency after surgically assisted rapid maxillary expansion. Int J Oral Maxillofac Surg 2014;43:581-6. https://doi.org/10.1016/j.ijom.2013.11.002
  6. Franklin KA, Lindberg E. Obstructive sleep apnea is a common disorder in the population-a review on the epidemiology of sleep apnea. J Thorac Dis 2015;7:1311-22. https://doi.org/10.3978/j.issn.2072-1439.2015.06.11
  7. Tarasiuk A, Reuveni H. The economic impact of obstructive sleep apnea. Curr Opin Pulm Med 2013;19:639-44. https://doi.org/10.1097/MCP.0b013e3283659e1e
  8. Nieto FJ, Young TB, Lind BK, Shahar E, Samet JM, Redline S, et al. Association of sleep-disordered breathing, sleep apnea, and hypertension in a large community-based study. Sleep Heart Health Study. JAMA 2000;283:1829-36. https://doi.org/10.1001/jama.283.14.1829 Erratum in: JAMA 2002;288:1985.
  9. Drager LF, Bortolotto LA, Lorenzi MC, Figueiredo AC, Krieger EM, Lorenzi-Filho G. Early signs of atherosclerosis in obstructive sleep apnea. Am J Respir Crit Care Med 2005;172:613-8. https://doi.org/10.1164/rccm.200503-340OC
  10. Drager LF, Lopes HF, Maki-Nunes C, Trombetta IC, Toschi-Dias E, Alves MJ, et al. The impact of obstructive sleep apnea on metabolic and inflammatory markers in consecutive patients with metabolic syndrome. PLoS One 2010;5:e12065. https://doi.org/10.1371/journal.pone.0012065
  11. Almuzian M, Ju X, Almukhtar A, Ayoub A, Al-Muzian L, McDonald JP. Does rapid maxillary expansion affect nasopharyngeal airway? A prospective Cone Beam Computerised Tomography (CBCT) based study. Surgeon 2018;16:1-11. https://doi.org/10.1016/j.surge.2015.12.006
  12. Michels Dde S, Rodrigues Ada M, Nakanishi M, Sampaio AL, Venosa AR. Nasal involvement in obstructive sleep apnea syndrome. Int J Otolaryngol 2014;2014:717419. https://doi.org/10.1155/2014/717419
  13. Douglas NJ, White DP, Weil JV, Zwillich CW. Effect of breathing route on ventilation and ventilatory drive. Respir Physiol 1983;51:209-18. https://doi.org/10.1016/0034-5687(83)90041-5
  14. Fastuca R, Meneghel M, Zecca PA, Mangano F, Antonello M, Nucera R, et al. Multimodal airway evaluation in growing patients after rapid maxillary expansion. Eur J Paediatr Dent 2015;16:129-34. https://pubmed.ncbi.nlm.nih.gov/26147819/
  15. Fastuca R, Perinetti G, Zecca PA, Nucera R, Caprioglio A. Airway compartments volume and oxygen saturation changes after rapid maxillary expansion: a longitudinal correlation study. Angle Orthod 2015;85:955-61. https://doi.org/10.2319/072014-504.1
  16. Iwasaki T, Saitoh I, Takemoto Y, Inada E, Kanomi R, Hayasaki H, et al. Improvement of nasal airway ventilation after rapid maxillary expansion evaluated with computational fluid dynamics. Am J Orthod Dentofacial Orthop 2012;141:269-78. https://doi.org/10.1016/j.ajodo.2011.08.025
  17. Gurel HG, Memili B, Erkan M, Sukurica Y. Long-term effects of rapid maxillary expansion followed by fixed appliances. Angle Orthod 2010;80:5-9. https://doi.org/10.2319/011209-22.1
  18. Haas AJ. The treatment of maxillary deficiency by opening the midpalatal suture. Angle Orthod 1965;35:200-17. https://pubmed.ncbi.nlm.nih.gov/14331020/ 1020
  19. Buck LM, Dalci O, Darendeliler MA, Papadopoulou AK. Effect of surgically assisted rapid maxillary expansion on upper airway volume: a systematic review. J Oral Maxillofac Surg 2016;74:1025-43. https://doi.org/10.1016/j.joms.2015.11.035
  20. Vinha PP, Faria AC, Xavier SP, Christino M, de Mello-Filho FV. Enlargement of the pharynx resulting from surgically assisted rapid maxillary expansion. J Oral Maxillofac Surg 2016;74:369-79. https://doi.org/10.1016/j.joms.2015.06.157
  21. Zambon CE, Ceccheti MM, Utumi ER, Pinna FR, Machado GG, Peres MP, et al. Orthodontic measurements and nasal respiratory function after surgically assisted rapid maxillary expansion: an acoustic rhinometry and rhinomanometry study. Int J Oral Maxillofac Surg 2012;41:1120-6. https://doi.org/10.1016/j.ijom.2011.12.037
  22. Paredes N, Colak O, Sfogliano L, Elkenawy I, Fijany L, Fraser A, et al. Differential assessment of skeletal, alveolar, and dental components induced by microimplant-supported midfacial skeletal expander (MSE), utilizing novel angular measurements from the fulcrum. Prog Orthod 2020;21:18. https://doi.org/10.1186/s40510-020-00320-w
  23. Cantarella D, Dominguez-Mompell R, Moschik C, Mallya SM, Pan HC, Alkahtani MR, et al. Midfacial changes in the coronal plane induced by microimplant-supported skeletal expander, studied with cone-beam computed tomography images. Am J Orthod Dentofacial Orthop 2018;154:337-45. https://doi.org/10.1016/j.ajodo.2017.11.033
  24. Colak O, Paredes NA, Elkenawy I, Torres M, Bui J, Jahangiri S, et al. Tomographic assessment of palatal suture opening pattern and pterygopalatine suture disarticulation in the axial plane after midfacial skeletal expansion. Prog Orthod 2020;21:21. https://doi.org/10.1186/s40510-020-00321-9
  25. MacGinnis M, Chu H, Youssef G, Wu KW, Machado AW, Moon W. The effects of micro-implant assisted rapid palatal expansion (MARPE) on the nasomaxillary complex--a finite element method (FEM) analysis. Prog Orthod 2014;15:52. https://doi.org/10.1186/s40510-014-0052-y
  26. Kabalan O, Gordon J, Heo G, Lagravere MO. Nasal airway changes in bone-borne and toothborne rapid maxillary expansion treatments. Int Orthod 2015;13:1-15. https://doi.org/10.1016/j.ortho.2014.12.011
  27. Jose J, Ell SR. The association of subjective nasal patency with peak inspiratory nasal flow in a large healthy population. Clin Otolaryngol Allied Sci 2003;28:352-4. https://doi.org/10.1046/j.1365-2273.2003.00722.x
  28. Teixeira RUF, Zappelini CEM, Alves FS, da Costa EA. Peak nasal inspiratory flow evaluation as an objective method of measuring nasal airflow. Braz J Otorhinolaryngol 2011;77:473-80. https://doi.org/10.1590/S1808-86942011000400011
  29. Ishii L, Godoy A, Ishman SL, Gourin CG, Ishii M. The nasal obstruction symptom evaluation survey as a screening tool for obstructive sleep apnea. Arch Otolaryngol Head Neck Surg 2011;137:119-23. https://doi.org/10.1001/archoto.2010.251
  30. Visual analog scale VAS rulers [Internet]. Colorado: HugeDomains; 2005 [cited 2023 Dec 21]. Available from: http://www.schlenkerenterprises.com/vas_medical_rulers.htm
  31. Singh AP. Visual analog scale and color analog scale for pain [Internet]. Punjab: Bone and Spine; 2012 [cited 2023 Oct 30]. Available from: http://boneandspine.com/visual-analog-scale-for-pain
  32. Lipan MJ, Most SP. Development of a severity classification system for subjective nasal obstruction. JAMA Facial Plast Surg 2013;15:358-61. https://doi.org/10.1001/jamafacial.2013.344
  33. Elkenawy I, Fijany L, Colak O, Paredes NA, Gargoum A, Abedini S, et al. An assessment of the magnitude, parallelism, and asymmetry of micro-implantassisted rapid maxillary expansion in non-growing patients. Prog Orthod 2020;21:42. https://doi.org/10.1186/s40510-020-00342-4
  34. Kara M, Erdogan H, Guclu O, Sahin H, Derekoy FS. Evaluation of sleep quality in patients with nasal septal deviation via the Pittsburgh Sleep Quality Index. J Craniofac Surg 2016;27:1738-40. https://doi.org/10.1097/SCS.0000000000003008
  35. Zhang B. Functional breathing improvement following treatment with maxillary skeletal expander [Master's thesis]. Los Angeles: University of California, Los Angeles; 2018. https://escholarship.org/uc/item/2c05r669
  36. Cistulli PA, Palmisano RG, Poole MD. Treatment of obstructive sleep apnea syndrome by rapid maxillary expansion. Sleep 1998;21:831-5. https://doi.org/10.1093/sleep/21.8.831
  37. Tome W, Moon W. The prevalence of posterior tongue tie in patients with transverse maxillary deficiency. Aust Orthod J 2021;37:294-300. https://doi.org/10.21307/aoj-2021.033