DOI QR코드

DOI QR Code

Liquid Biopsy: An Emerging Diagnostic, Prognostic, and Predictive Tool in Gastric Cancer

  • Hye Sook Han (Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine) ;
  • Keun-Wook Lee (Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine)
  • 투고 : 2023.11.28
  • 심사 : 2023.12.06
  • 발행 : 2024.01.01

초록

Liquid biopsy, a minimally invasive procedure that causes minimal pain and complication risks to patients, has been extensively studied for cancer diagnosis and treatment. Moreover, it facilitates comprehensive quantification and serial assessment of the whole-body tumor burden. Several biosources obtained through liquid biopsy have been studied as important biomarkers for establishing early diagnosis, monitoring minimal residual disease, and predicting the prognosis and response to treatment in patients with cancer. Although the clinical application of liquid biopsy in gastric cancer is not as robust as that in other cancers, biomarker studies using liquid biopsy are being actively conducted in patients with gastric cancer. Herein, we aimed to review the role of various biosources that can be obtained from patients with gastric cancer through liquid biopsies, such as blood, saliva, gastric juice, urine, stool, peritoneal lavage fluid, and ascites, by dividing them into cellular and acellular components. In addition, we reviewed previous studies on the diagnostic, prognostic, and predictive biomarkers for gastric cancer using liquid biopsy and discussed the limitations of liquid biopsy and the challenges to overcome these limitations in patients with gastric cancer.

키워드

과제정보

This review was supported by the Basic Science Research Program through the National Research Foundation of Korea, funded by the Ministry of Education, Science, and Technology (2017R1A5A2015541).

참고문헌

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71:209-249. https://doi.org/10.3322/caac.21660
  2. Kim TH, Kim IH, Kang SJ, Choi M, Kim BH, Eom BW, et al. Korean Practice Guidelines for Gastric Cancer 2022: an evidence-based, multidisciplinary approach. J Gastric Cancer 2023;23:3-106. https://doi.org/10.5230/jgc.2023.23.e11
  3. Lone SN, Nisar S, Masoodi T, Singh M, Rizwan A, Hashem S, et al. Liquid biopsy: a step closer to transform diagnosis, prognosis and future of cancer treatments. Mol Cancer 2022;21:79.
  4. Ma S, Zhou M, Xu Y, Gu X, Zou M, Abudushalamu G, et al. Clinical application and detection techniques of liquid biopsy in gastric cancer. Mol Cancer 2023;22:7.
  5. Zhang Z, Wu H, Chong W, Shang L, Jing C, Li L. Liquid biopsy in gastric cancer: predictive and prognostic biomarkers. Cell Death Dis 2022;13:903.
  6. Ma X, Ou K, Liu X, Yang L. Application progress of liquid biopsy in gastric cancer. Front Oncol 2022;12:969866.
  7. Chivu-Economescu M, Necula L, Matei L, Dragu D, Bleotu C, Diaconu CC. Clinical applications of liquid biopsy in gastric cancer. Front Med (Lausanne) 2021;8:749250.
  8. Grizzi G, Salati M, Bonomi M, Ratti M, Holladay L, De Grandis MC, et al. Circulating tumor DNA in gastric adenocarcinoma: future clinical applications and perspectives. Int J Mol Sci 2023;24:9421.
  9. Mencel J, Slater S, Cartwright E, Starling N. The role of ctDNA in gastric cancer. Cancers (Basel) 2022;14:5105.
  10. Paschold L, Binder M. Circulating tumor DNA in gastric and gastroesophageal junction cancer. Curr Oncol 2022;29:1430-1441. https://doi.org/10.3390/curroncol29030120
  11. Krebs MG, Metcalf RL, Carter L, Brady G, Blackhall FH, Dive C. Molecular analysis of circulating tumour cells-biology and biomarkers. Nat Rev Clin Oncol 2014;11:129-144. https://doi.org/10.1038/nrclinonc.2013.253
  12. Thierry AR, El Messaoudi S, Gahan PB, Anker P, Stroun M. Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev 2016;35:347-376. https://doi.org/10.1007/s10555-016-9629-x
  13. Wang BG, Huang HY, Chen YC, Bristow RE, Kassauei K, Cheng CC, et al. Increased plasma DNA integrity in cancer patients. Cancer Res 2003;63:3966-3968.
  14. Luo H, Wei W, Ye Z, Zheng J, Xu RH. Liquid biopsy of methylation biomarkers in cell-free DNA. Trends Mol Med 2021;27:482-500. https://doi.org/10.1016/j.molmed.2020.12.011
  15. Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med 2008;14:985-990. https://doi.org/10.1038/nm.1789
  16. Lee JS, Kim M, Seong MW, Kim HS, Lee YK, Kang HJ. Plasma vs. serum in circulating tumor DNA measurement: characterization by DNA fragment sizing and digital droplet polymerase chain reaction. Clin Chem Lab Med 2020;58:527-532. https://doi.org/10.1515/cclm-2019-0896
  17. Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell 2014;157:77-94. https://doi.org/10.1016/j.cell.2014.03.008
  18. Yu W, Hurley J, Roberts D, Chakrabortty SK, Enderle D, Noerholm M, et al. Exosome-based liquid biopsies in cancer: opportunities and challenges. Ann Oncol 2021;32:466-477. https://doi.org/10.1016/j.annonc.2021.01.074
  19. Kang HM, Kim GH, Jeon HK, Kim DH, Jeon TY, Park DY, et al. Circulating tumor cells detected by lab-on-a-disc: role in early diagnosis of gastric cancer. PLoS One 2017;12:e0180251.
  20. Watanabe T, Okumura T, Hirano K, Yamaguchi T, Sekine S, Nagata T, et al. Circulating tumor cells expressing cancer stem cell marker CD44 as a diagnostic biomarker in patients with gastric cancer. Oncol Lett 2017;13:281-288. https://doi.org/10.3892/ol.2016.5432
  21. Pu WY, Zhang R, Xiao L, Wu YY, Gong W, Lv XD, et al. Prediction of cancer progression in a group of 73 gastric cancer patients by circulating cell-free DNA. BMC Cancer 2016;16:943.
  22. Qian C, Ju S, Qi J, Zhao J, Shen X, Jing R, et al. Alu-based cell-free DNA: a novel biomarker for screening of gastric cancer. Oncotarget 2016;8:54037-54045. https://doi.org/10.18632/oncotarget.11079
  23. Lan YT, Chen MH, Fang WL, Hsieh CC, Lin CH, Jhang FY, et al. Clinical relevance of cell-free DNA in gastrointestinal tract malignancy. Oncotarget 2017;8:3009-3017. https://doi.org/10.18632/oncotarget.13821
  24. Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, Danilova L, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 2018;359:926-930. https://doi.org/10.1126/science.aar3247
  25. Kandimalla R, Xu J, Link A, Matsuyama T, Yamamura K, Parker MI, et al. EpiPanGI Dx: a cell-free DNA methylation fingerprint for the early detection of gastrointestinal cancers. Clin Cancer Res 2021;27:6135-6144. https://doi.org/10.1158/1078-0432.CCR-21-1982
  26. Hideura E, Suehiro Y, Nishikawa J, Shuto T, Fujimura H, Ito S, et al. Blood free-circulating DNA testing of methylated RUNX3 is useful for diagnosing early gastric cancer. Cancers (Basel) 2020;12:789.
  27. Alarcon MA, Olivares W, Cordova-Delgado M, Munoz-Medel M, de Mayo T, Carrasco-Avino G, et al. The reprimo-like gene is an epigenetic-mediated tumor suppressor and a candidate biomarker for the non-invasive detection of gastric cancer. Int J Mol Sci 2020;21:9472.
  28. Miao J, Liu Y, Zhao G, Liu X, Ma Y, Li H, et al. Feasibility of plasma-methylated SFRP2 for early detection of gastric cancer. Cancer Contr 2020;27:1073274820922559.
  29. Hu D, Lou X, Meng N, Li Z, Teng Y, Zou Y, et al. Peripheral blood-based DNA methylation of long non-coding RNA H19 and metastasis-associated lung adenocarcinoma transcript 1 promoters are potential non-invasive biomarkers for gastric cancer detection. Cancer Contr 2021;28:10732748211043667.
  30. Zhu C, Ren C, Han J, Ding Y, Du J, Dai N, et al. A five-microRNA panel in plasma was identified as potential biomarker for early detection of gastric cancer. Br J Cancer 2014;110:2291-2299. https://doi.org/10.1038/bjc.2014.119
  31. Wu J, Li G, Wang Z, Yao Y, Chen R, Pu X, et al. Circulating microRNA-21 is a potential diagnostic biomarker in gastric cancer. Dis Markers 2015;2015:435656.
  32. Shin VY, Ng EK, Chan VW, Kwong A, Chu KM. A three-miRNA signature as promising non-invasive diagnostic marker for gastric cancer. Mol Cancer 2015;14:202.
  33. Zhuang K, Han K, Tang H, Yin X, Zhang J, Zhang X, et al. Up-Regulation of Plasma miR-23b is Associated with Poor Prognosis of Gastric Cancer. Med Sci Monit 2016;22:356-361. https://doi.org/10.12659/MSM.895428
  34. Hung PS, Chen CY, Chen WT, Kuo CY, Fang WL, Huang KH, et al. miR-376c promotes carcinogenesis and serves as a plasma marker for gastric carcinoma. PLoS One 2017;12:e0177346.
  35. Zhao G, Jiang T, Liu Y, Huai G, Lan C, Li G, et al. Droplet digital PCR-based circulating microRNA detection serve as a promising diagnostic method for gastric cancer. BMC Cancer 2018;18:676.
  36. Kong Y, Ning L, Qiu F, Yu Q, Cao B. Clinical significance of serum miR-25 as a diagnostic and prognostic biomarker in human gastric cancer. Cancer Biomark 2019;24:477-483. https://doi.org/10.3233/CBM-182213
  37. Ji B, Huang Y, Gu T, Zhang L, Li G, Zhang C. Potential diagnostic and prognostic value of plasma long noncoding RNA LINC00086 and miR-214 expression in gastric cancer. Cancer Biomark 2019;24:249-255. https://doi.org/10.3233/CBM-181486
  38. Huang ZS, Guo XW, Zhang G, Liang LX, Nong B. The diagnostic and prognostic value of miR-200c in gastric cancer: a meta-analysis. Dis Markers 2019;2019:8949618.
  39. Zhu XL, Ren LF, Wang HP, Bai ZT, Zhang L, Meng WB, et al. Plasma microRNAs as potential new biomarkers for early detection of early gastric cancer. World J Gastroenterol 2019;25:1580-1591. https://doi.org/10.3748/wjg.v25.i13.1580
  40. Shao JP, Su F, Zhang SP, Chen HK, Li ZJ, Xing GQ, et al. miR-212 as potential biomarker suppresses the proliferation of gastric cancer via targeting SOX4. J Clin Lab Anal 2020;34:e23511.
  41. Yao Y, Ding Y, Bai Y, Zhou Q, Lee H, Li X, et al. Identification of serum circulating microRNAs as novel diagnostic biomarkers of gastric cancer. Front Genet 2021;11:591515.
  42. Abe S, Matsuzaki J, Sudo K, Oda I, Katai H, Kato K, et al. A novel combination of serum microRNAs for the detection of early gastric cancer. Gastric Cancer 2021;24:835-843. https://doi.org/10.1007/s10120-021-01161-0
  43. Izumi D, Zhu Z, Chen Y, Toden S, Huo X, Kanda M, et al. Assessment of the diagnostic efficiency of a liquid biopsy assay for early detection of gastric cancer. JAMA Netw Open 2021;4:e2121129.
  44. Yu Z, Rong Z, Sheng J, Luo Z, Zhang J, Li T, et al. Aberrant non-coding RNA expressed in gastric cancer and its diagnostic value. Front Oncol 2021;11:606764.
  45. So JB, Kapoor R, Zhu F, Koh C, Zhou L, Zou R, et al. Development and validation of a serum microRNA biomarker panel for detecting gastric cancer in a high-risk population. Gut 2021;70:829-837. https://doi.org/10.1136/gutjnl-2020-322065
  46. Dong L, Qi P, Xu MD, Ni SJ, Huang D, Xu QH, et al. Circulating CUDR, LSINCT-5 and PTENP1 long noncoding RNAs in sera distinguish patients with gastric cancer from healthy controls. Int J Cancer 2015;137:1128-1135. https://doi.org/10.1002/ijc.29484
  47. Zhang K, Shi H, Xi H, Wu X, Cui J, Gao Y, et al. Genome-wide lncRNA microarray profiling identifies novel circulating lncRNAs for detection of gastric cancer. Theranostics 2017;7:213-227. https://doi.org/10.7150/thno.16044
  48. Xian HP, Zhuo ZL, Sun YJ, Liang B, Zhao XT. Circulating long non-coding RNAs HULC and ZNFX1-AS1 are potential biomarkers in patients with gastric cancer. Oncol Lett 2018;16:4689-4698. https://doi.org/10.3892/ol.2018.9199
  49. Fu M, Huang Z, Zang X, Pan L, Liang W, Chen J, et al. Long noncoding RNA LINC00978 promotes cancer growth and acts as a diagnostic biomarker in gastric cancer. Cell Prolif 2018;51:e12425.
  50. Liu J, Wang J, Song Y, Ma B, Luo J, Ni Z, et al. A panel consisting of three novel circulating lncRNAs, is it a predictive tool for gastric cancer? J Cell Mol Med 2018;22:3605-3613. https://doi.org/10.1111/jcmm.13640
  51. Yang Z, Sun Y, Liu R, Shi Y, Ding S. Plasma long noncoding RNAs PANDAR, FOXD2-AS1, and SMARCC2 as potential novel diagnostic biomarkers for gastric cancer. Cancer Manag Res 2019;11:6175-6184. https://doi.org/10.2147/CMAR.S201935
  52. Zong W, Feng W, Jiang Y, Ju S, Cui M, Jing R. Evaluating the diagnostic and prognostic value of serum long non-coding RNA CTC-497E21.4 in gastric cancer. Clin Chem Lab Med 2019;57:1063-1072. https://doi.org/10.1515/cclm-2018-0929
  53. Zhang G, Xu Y, Wang S, Gong Z, Zou C, Zhang H, et al. LncRNA SNHG17 promotes gastric cancer progression by epigenetically silencing of p15 and p57. J Cell Physiol 2019;234:5163-5174. https://doi.org/10.1002/jcp.27320
  54. Zhang G, Xu Y, Zou C, Tang Y, Lu J, Gong Z, et al. Long noncoding RNA ARHGAP27P1 inhibits gastric cancer cell proliferation and cell cycle progression through epigenetically regulating p15 and p16. Aging (Albany NY) 2019;11:9090-9110. https://doi.org/10.18632/aging.102377
  55. Feng W, Zong W, Li Y, Shen X, Cui X, Ju S. Abnormally expressed long noncoding RNA B3GALT5-AS1 may serve as a biomarker for the diagnostic and prognostic of gastric cancer. J Cell Biochem 2020;121:557-565. https://doi.org/10.1002/jcb.29296
  56. Zhou Q, Li H, Jing J, Yuan Y, Sun L. Evaluation of C5orf66-AS1 as a potential biomarker for predicting early gastric cancer and its role in gastric carcinogenesis. Onco Targets Ther 2020;13:2795-2805. https://doi.org/10.2147/OTT.S239965
  57. Qin S, Yang L, Kong S, Xu Y, Liang B, Ju S. LncRNA HCP5: a potential biomarker for diagnosing gastric cancer. Front Oncol 2021;11:684531.
  58. Huang M, He YR, Liang LC, Huang Q, Zhu ZQ. Circular RNA hsa_circ_0000745 may serve as a diagnostic marker for gastric cancer. World J Gastroenterol 2017;23:6330-6338. https://doi.org/10.3748/wjg.v23.i34.6330
  59. Sun H, Tang W, Rong D, Jin H, Fu K, Zhang W, et al. Hsa_circ_0000520, a potential new circular RNA biomarker, is involved in gastric carcinoma. Cancer Biomark 2018;21:299-306. https://doi.org/10.3233/CBM-170379
  60. Ma S, Kong S, Gu X, Xu Y, Tao M, Shen L, et al. As a biomarker for gastric cancer, circPTPN22 regulates the progression of gastric cancer through the EMT pathway. Cancer Cell Int 2021;21:44.
  61. Roy S, Kanda M, Nomura S, Zhu Z, Toiyama Y, Taketomi A, et al. Diagnostic efficacy of circular RNAs as noninvasive, liquid biopsy biomarkers for early detection of gastric cancer. Mol Cancer 2022;21:42.
  62. Wang N, Wang L, Yang Y, Gong L, Xiao B, Liu X. A serum exosomal microRNA panel as a potential biomarker test for gastric cancer. Biochem Biophys Res Commun 2017;493:1322-1328. https://doi.org/10.1016/j.bbrc.2017.10.003
  63. Tang S, Cheng J, Yao Y, Lou C, Wang L, Huang X, et al. Combination of four serum exosomal MiRNAs as novel diagnostic biomarkers for early-stage gastric cancer. Front Genet 2020;11:237.
  64. Ge L, Zhang N, Li D, Wu Y, Wang H, Wang J. Circulating exosomal small RNAs are promising non-invasive diagnostic biomarkers for gastric cancer. J Cell Mol Med 2020;24:14502-14513. https://doi.org/10.1111/jcmm.16077
  65. Zheng GD, Xu ZY, Hu C, Lv H, Xie HX, Huang T, et al. Exosomal miR-590-5p in serum as a biomarker for the diagnosis and prognosis of gastric cancer. Front Mol Biosci 2021;8:636566.
  66. Yang J, Li X, Wei S, Peng L, Sang H, Jin D, et al. Evaluation of the diagnostic potential of a plasma exosomal miRNAs panel for gastric cancer. Front Oncol 2021;11:683465. 
  67. Tang G, Wang J, Dong W, Dai K, Du J. Exosomal miRNA expression profiling and the roles of exosomal miR-4741, miR-32, miR-3149, and miR-6727 on gastric cancer progression. BioMed Res Int 2022;2022:1263812.
  68. Lin LY, Yang L, Zeng Q, Wang L, Chen ML, Zhao ZH, et al. Tumor-originated exosomal lncUEGC1 as a circulating biomarker for early-stage gastric cancer. Mol Cancer 2018;17:84.
  69. Zhao R, Zhang Y, Zhang X, Yang Y, Zheng X, Li X, et al. Exosomal long noncoding RNA HOTTIP as potential novel diagnostic and prognostic biomarker test for gastric cancer. Mol Cancer 2018;17:68.
  70. Cai C, Zhang H, Zhu Y, Zheng P, Xu Y, Sun J, et al. Serum exosomal long noncoding RNA pcsk2-2:1 as a potential novel diagnostic biomarker for gastric cancer. Onco Targets Ther 2019;12:10035-10041. https://doi.org/10.2147/OTT.S229033
  71. Li S, Zhang M, Zhang H, Hu K, Cai C, Wang J, et al. Exosomal long noncoding RNA lnc-GNAQ-6:1 may serve as a diagnostic marker for gastric cancer. Clin Chim Acta 2020;501:252-257. https://doi.org/10.1016/j.cca.2019.10.047
  72. Guo X, Lv X, Ru Y, Zhou F, Wang N, Xi H, et al. Circulating exosomal gastric cancer-associated long noncoding RNA1 as a biomarker for early detection and monitoring progression of gastric cancer: a multiphase study. JAMA Surg 2020;155:572-579. https://doi.org/10.1001/jamasurg.2020.1133
  73. Shao Y, Tao X, Lu R, Zhang H, Ge J, Xiao B, et al. Hsa_circ_0065149 is an indicator for early gastric cancer screening and prognosis prediction. Pathol Oncol Res 2020;26:1475-1482. https://doi.org/10.1007/s12253-019-00716-y
  74. Zheng P, Gao H, Xie X, Lu P. Plasma exosomal hsa_circ_0015286 as a potential diagnostic and prognostic biomarker for gastric cancer. Pathol Oncol Res 2022;28:1610446.
  75. Aikou S, Ohmoto Y, Gunji T, Matsuhashi N, Ohtsu H, Miura H, et al. Tests for serum levels of trefoil factor family proteins can improve gastric cancer screening. Gastroenterology 2011;141:837-845.e1. https://doi.org/10.1053/j.gastro.2011.05.040
  76. Tong W, Ye F, He L, Cui L, Cui M, Hu Y, et al. Serum biomarker panels for diagnosis of gastric cancer. Onco Targets Ther 2016;9:2455-2463.
  77. Choi B, Lee HJ, Min J, Choe HN, Choi YS, Son YG, et al. Plasma expression of the intestinal metaplasia markers CDH17 and TFF3 in patients with gastric cancer. Cancer Biomark 2017;19:231-239. https://doi.org/10.3233/CBM-160147
  78. Zhu Y, Hu Y, Zhu X, Zhang J, Yuwen D, Wei X, et al. Plasma thioredoxin reductase: a potential diagnostic biomarker for gastric cancer. Carcinogenesis 2022;43:736-745. https://doi.org/10.1093/carcin/bgac052
  79. Park SH, Kang MJ, Yun EH, Jung KW. Epidemiology of gastric cancer in Korea: trends in incidence and survival based on Korea Central Cancer Registry data (1999-2019). J Gastric Cancer 2022;22:160-168. https://doi.org/10.5230/jgc.2022.22.e21
  80. Feng F, Tian Y, Xu G, Liu Z, Liu S, Zheng G, et al. Diagnostic and prognostic value of CEA, CA19-9, AFP and CA125 for early gastric cancer. BMC Cancer 2017;17:737.
  81. Zeng CD, Jin CC, Gao C, Xiao AT, Tong YX, Zhang S. Preoperative folate receptor-positive circulating tumor cells are associated with occult peritoneal metastasis and early recurrence in gastric cancer patients: a prospective cohort study. Front Oncol 2022;12:769203.
  82. Ko K, Kananazawa Y, Yamada T, Kakinuma D, Matsuno K, Ando F, et al. Methylation status and long-fragment cell-free DNA are prognostic biomarkers for gastric cancer. Cancer Med 2021;10:2003-2012. https://doi.org/10.1002/cam4.3755
  83. Kim YW, Kim YH, Song Y, Kim HS, Sim HW, Poojan S, et al. Monitoring circulating tumor DNA by analyzing personalized cancer-specific rearrangements to detect recurrence in gastric cancer. Exp Mol Med 2019;51:1-10. https://doi.org/10.1038/s12276-019-0292-5
  84. Maron SB, Chase LM, Lomnicki S, Kochanny S, Moore KL, Joshi SS, et al. Circulating tumor DNA sequencing analysis of gastroesophageal adenocarcinoma. Clin Cancer Res 2019;25:7098-7112. https://doi.org/10.1158/1078-0432.CCR-19-1704
  85. Yang J, Gong Y, Lam VK, Shi Y, Guan Y, Zhang Y, et al. Deep sequencing of circulating tumor DNA detects molecular residual disease and predicts recurrence in gastric cancer. Cell Death Dis 2020;11:346.
  86. Openshaw MR, Suwaidan AA, Ottolini B, Fernandez-Garcia D, Richards CJ, Page K, et al. Longitudinal monitoring of circulating tumour DNA improves prognostication and relapse detection in gastroesophageal adenocarcinoma. Br J Cancer 2020;123:1271-1279. https://doi.org/10.1038/s41416-020-1002-8
  87. Yang C, Zou K, Yuan Z, Guo T, Xiong B. Prognostic value of circulating tumor cells detected with the CellSearch System in patients with gastric cancer: evidence from a meta-analysis. Onco Targets Ther 2018;11:1013-1023. https://doi.org/10.2147/OTT.S154114
  88. Ito H, Sato J, Tsujino Y, Yamaguchi N, Kimura S, Gohda K, et al. Long-term prognostic impact of circulating tumour cells in gastric cancer patients. World J Gastroenterol 2016;22:10232-10241. https://doi.org/10.3748/wjg.v22.i46.10232
  89. Pernot S, Badoual C, Terme M, Castan F, Cazes A, Bouche O, et al. Dynamic evaluation of circulating tumour cells in patients with advanced gastric and oesogastric junction adenocarcinoma: Prognostic value and early assessment of therapeutic effects. Eur J Cancer 2017;79:15-22. https://doi.org/10.1016/j.ejca.2017.03.036
  90. Ning D, Cui K, Liu M, Ou Y, Wang Z, Zou B, et al. Comparison of CellSearch and circulating tumor cells (CTC)-biopsy systems in detecting peripheral blood circulating tumor cells in patients with gastric cancer. Med Sci Monit 2021;27:e926565.
  91. Szczepanik A, Sierzega M, Drabik G, Pituch-Noworolska A, Kolodziejczyk P, Zembala M. CD44+ cytokeratin-positive tumor cells in blood and bone marrow are associated with poor prognosis of patients with gastric cancer. Gastric Cancer 2019;22:264-272. https://doi.org/10.1007/s10120-018-0858-2
  92. Liu M, Wang R, Sun X, Liu Y, Wang Z, Yan J, et al. Prognostic significance of PD-L1 expression on cell-surface vimentin-positive circulating tumor cells in gastric cancer patients. Mol Oncol 2020;14:865-881. https://doi.org/10.1002/1878-0261.12643
  93. Jhi JH, Kim GH, Park SJ, Kim DU, Lee MW, Lee BE, et al. Circulating tumor cells and TWIST expression in patients with metastatic gastric cancer: a preliminary study. J Clin Med 2021;10:4481.
  94. He Q, Li G, Ji X, Ma L, Wang X, Li Y, et al. Impact of the immune cell population in peripheral blood on response and survival in patients receiving neoadjuvant chemotherapy for advanced gastric cancer. Tumour Biol 2017;39:1010428317697571.
  95. Ma J, Li J, He N, Qian M, Lu Y, Wang X, et al. Identification and validation of a novel survival prediction model based on the T-cell phenotype in the tumor immune microenvironment and peripheral blood for gastric cancer prognosis. J Transl Med 2023;21:73.
  96. Shin K, Kim J, Park SJ, Kim H, Lee MA, Kim O, et al. Early increase in circulating PD-1+CD8+ T cells predicts favorable survival in patients with advanced gastric cancer receiving chemotherapy. Cancers (Basel) 2023;15:3955.
  97. Fang WL, Lan YT, Huang KH, Liu CA, Hung YP, Lin CH, et al. Clinical significance of circulating plasma DNA in gastric cancer. Int J Cancer 2016;138:2974-2983. https://doi.org/10.1002/ijc.30018
  98. Karamitrousis EI, Balgkouranidou I, Xenidis N, Amarantidis K, Biziota E, Koukaki T, et al. Prognostic role of RASSF1A, SOX17 and Wif-1 promoter methylation status in cell-free DNA of advanced gastric cancer patients. Technol Cancer Res Treat 2021;20:1533033820973279.
  99. Li J, Li Z, Ding Y, Xu Y, Zhu X, Cao N, et al. TP53 mutation and MET amplification in circulating tumor DNA analysis predict disease progression in patients with advanced gastric cancer. PeerJ 2021;9:e11146.
  100. Yan H, Chen W, Ge K, Mao X, Li X, Liu W, et al. Value of plasma methylated SFRP2 in prognosis of gastric cancer. Dig Dis Sci 2021;66:3854-3861. https://doi.org/10.1007/s10620-020-06710-8
  101. Komatsu S, Imamura T, Kiuchi J, Takashima Y, Kamiya H, Ohashi T, et al. Depletion of tumor suppressor miRNA-148a in plasma relates to tumor progression and poor outcomes in gastric cancer. Am J Cancer Res 2021;11:6133-6146. 
  102. Matsusaka S, Chin K, Ogura M, Suenaga M, Shinozaki E, Mishima Y, et al. Circulating tumor cells as a surrogate marker for determining response to chemotherapy in patients with advanced gastric cancer. Cancer Sci 2010;101:1067-1071. https://doi.org/10.1111/j.1349-7006.2010.01492.x
  103. Li Y, Zhang X, Liu D, Gong J, Wang DD, Li S, et al. Evolutionary expression of HER2 conferred by chromosome aneuploidy on circulating gastric cancer cells contributes to developing targeted and chemotherapeutic resistance. Clin Cancer Res 2018;24:5261-5271. https://doi.org/10.1158/1078-0432.CCR-18-1205
  104. Cheng B, Tong G, Wu X, Cai W, Li Z, Tong Z, et al. Enumeration and characterization of circulating tumor cells and its application in advanced gastric cancer. Onco Targets Ther 2019;12:7887-7896. https://doi.org/10.2147/OTT.S223222
  105. Negishi R, Yamakawa H, Kobayashi T, Horikawa M, Shimoyama T, Koizumi F, et al. Transcriptomic profiling of single circulating tumor cells provides insight into human metastatic gastric cancer. Commun Biol 2022;5:20.
  106. Nose Y, Saito T, Yamamoto K, Yamashita K, Tanaka K, Yamamoto K, et al. The tissue-resident marker CD103 on peripheral blood T cells predicts responses to anti-PD-1 therapy in gastric cancer. Cancer Immunol Immunother 2023;72:169-181. https://doi.org/10.1007/s00262-022-03240-2
  107. Willis J, Lefterova MI, Artyomenko A, Kasi PM, Nakamura Y, Mody K, et al. Validation of microsatellite instability detection using a comprehensive plasma-based genotyping panel. Clin Cancer Res 2019;25:7035-7045. https://doi.org/10.1158/1078-0432.CCR-19-1324
  108. Zhong Y, Fan Q, Zhou Z, Wang Y, He K, Lu J. Plasma cfDNA as a potential biomarker to evaluate the efficacy of chemotherapy in gastric cancer. Cancer Manag Res 2020;12:3099-3106. https://doi.org/10.2147/CMAR.S243320
  109. Normando SR, Delgado PO, Rodrigues AK, David Filho WJ, Fonseca FL, Cruz FJ, et al. Circulating free plasma tumor DNA in patients with advanced gastric cancer receiving systemic chemotherapy. BMC Clin Pathol 2018;18:12.
  110. Kim ST, Cristescu R, Bass AJ, Kim KM, Odegaard JI, Kim K, et al. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat Med 2018;24:1449-1458. https://doi.org/10.1038/s41591-018-0101-z
  111. Kato S, Okamura R, Baumgartner JM, Patel H, Leichman L, Kelly K, et al. Analysis of circulating tumor DNA and clinical correlates in patients with esophageal, gastroesophageal junction, and gastric adenocarcinoma. Clin Cancer Res 2018;24:6248-6256. https://doi.org/10.1158/1078-0432.CCR-18-1128
  112. Chen Z, Zhang C, Zhang M, Li B, Niu Y, Chen L, et al. Chromosomal instability of circulating tumor DNA reflect therapeutic responses in advanced gastric cancer. Cell Death Dis 2019;10:697.
  113. Wang Y, Zhao C, Chang L, Jia R, Liu R, Zhang Y, et al. Circulating tumor DNA analyses predict progressive disease and indicate trastuzumab-resistant mechanism in advanced gastric cancer. EBioMedicine 2019;43:261-269. https://doi.org/10.1016/j.ebiom.2019.04.003
  114. Wang DS, Liu ZX, Lu YX, Bao H, Wu X, Zeng ZL, et al. Liquid biopsies to track trastuzumab resistance in metastatic HER2-positive gastric cancer. Gut 2019;68:1152-1161. https://doi.org/10.1136/gutjnl-2018-316522
  115. Li F, Yoshizawa JM, Kim KM, Kanjanapangka J, Grogan TR, Wang X, et al. Discovery and validation of salivary extracellular RNA biomarkers for noninvasive detection of gastric cancer. Clin Chem 2018;64:1513-1521. https://doi.org/10.1373/clinchem.2018.290569
  116. Xu F, Jiang M. Evaluation of predictive role of carcinoembryonic antigen and salivary mRNA biomarkers in gastric cancer detection. Medicine (Baltimore) 2020;99:e20419.
  117. Xiao H, Zhang Y, Kim Y, Kim S, Kim JJ, Kim KM, et al. Differential proteomic analysis of human saliva using tandem mass tags quantification for gastric cancer detection. Sci Rep 2016;6:22165.
  118. Shu J, Yu H, Li X, Zhang D, Liu X, Du H, et al. Salivary glycopatterns as potential biomarkers for diagnosis of gastric cancer. Oncotarget 2017;8:35718-35727. https://doi.org/10.18632/oncotarget.16082
  119. Huang K, Gao X, Wu L, Yan B, Wang Z, Zhang X, et al. Salivary microbiota for gastric cancer prediction: an exploratory study. Front Cell Infect Microbiol 2021;11:640309.
  120. Yu X, Luo L, Wu Y, Yu X, Liu Y, Yu X, et al. Gastric juice miR-129 as a potential biomarker for screening gastric cancer. Med Oncol 2013;30:365.
  121. Cui L, Zhang X, Ye G, Zheng T, Song H, Deng H, et al. Gastric juice MicroRNAs as potential biomarkers for the screening of gastric cancer. Cancer 2013;119:1618-1626. https://doi.org/10.1002/cncr.27903
  122. Shao J, Fang PH, He B, Guo LL, Shi MY, Zhu Y, et al. Downregulated MicroRNA-133a in gastric juice as a clinicopathological biomarker for gastric cancer screening. Asian Pac J Cancer Prev 2016;17:2719-2722.
  123. Shao Y, Ye M, Jiang X, Sun W, Ding X, Liu Z, et al. Gastric juice long noncoding RNA used as a tumor marker for screening gastric cancer. Cancer 2014;120:3320-3328. https://doi.org/10.1002/cncr.28882
  124. Shao Y, Ye M, Li Q, Sun W, Ye G, Zhang X, et al. LncRNA-RMRP promotes carcinogenesis by acting as a miR-206 sponge and is used as a novel biomarker for gastric cancer. Oncotarget 2016;7:37812-37824. https://doi.org/10.18632/oncotarget.9336
  125. Yang Y, Shao Y, Zhu M, Li Q, Yang F, Lu X, et al. Using gastric juice lncRNA-ABHD11-AS1 as a novel type of biomarker in the screening of gastric cancer. Tumour Biol 2016;37:1183-1188. https://doi.org/10.1007/s13277-015-3903-3
  126. Zhou X, Liu J, Meng A, Zhang L, Wang M, Fan H, et al. Gastric juice piR-1245: a promising prognostic biomarker for gastric cancer. J Clin Lab Anal 2020;34:e23131.
  127. Yamamoto H, Watanabe Y, Oikawa R, Morita R, Yoshida Y, Maehata T, et al. BARHL2 methylation using gastric wash DNA or gastric juice exosomal DNA is a useful marker for early detection of gastric cancer in an H. pylori-independent manner. Clin Transl Gastroenterol 2016;7:e184.
  128. Chen Q, Hu Y, Fang Z, Ye M, Li J, Zhang S, et al. Elevated levels of oxidative nucleic acid modification markers in urine from gastric cancer patients: quantitative analysis by ultra performance liquid chromatography-tandem mass spectrometry. Front Chem 2020;8:606495.
  129. Iwasaki H, Shimura T, Yamada T, Okuda Y, Natsume M, Kitagawa M, et al. A novel urinary microRNA biomarker panel for detecting gastric cancer. J Gastroenterol 2019;54:1061-1069. https://doi.org/10.1007/s00535-019-01601-w
  130. Shimura T, Dagher A, Sachdev M, Ebi M, Yamada T, Yamada T, et al. Urinary ADAM12 and MMP-9/NGAL complex detect the presence of gastric cancer. Cancer Prev Res (Phila) 2015;8:240-248. https://doi.org/10.1158/1940-6207.CAPR-14-0229
  131. Dong X, Wang G, Zhang G, Ni Z, Suo J, Cui J, et al. The endothelial lipase protein is promising urinary biomarker for diagnosis of gastric cancer. Diagn Pathol 2013;8:45.
  132. Shimura T, Dayde D, Wang H, Okuda Y, Iwasaki H, Ebi M, et al. Novel urinary protein biomarker panel for early diagnosis of gastric cancer. Br J Cancer 2020;123:1656-1664. https://doi.org/10.1038/s41416-020-01063-5
  133. Wu J, Zhang C, Xu S, Xiang C, Wang R, Yang D, et al. Fecal microbiome alteration may be a potential marker for gastric cancer. Dis Markers 2020;2020:3461315.
  134. Liu S, Dai J, Lan X, Fan B, Dong T, Zhang Y, et al. Intestinal bacteria are potential biomarkers and therapeutic targets for gastric cancer. Microb Pathog 2021;151:104747.
  135. Okabe H, Tsunoda S, Hosogi H, Hisamori S, Tanaka E, Tanaka S, et al. Circulating tumor cells as an independent predictor of survival in advanced gastric cancer. Ann Surg Oncol 2015;22:3954-3961. https://doi.org/10.1245/s10434-015-4483-6
  136. Takahashi K, Kurashina K, Yamaguchi H, Kanamaru R, Ohzawa H, Miyato H, et al. Altered intraperitoneal immune microenvironment in patients with peritoneal metastases from gastric cancer. Front Immunol 2022;13:969468.
  137. Hu XY, Ling ZN, Hong LL, Yu QM, Li P, Ling ZQ. Circulating methylated THBS1 DNAs as a novel marker for predicting peritoneal dissemination in gastric cancer. J Clin Lab Anal 2021;35:e23936. 
  138. Hiraki M, Kitajima Y, Koga Y, Tanaka T, Nakamura J, Hashiguchi K, et al. Aberrant gene methylation is a biomarker for the detection of cancer cells in peritoneal wash samples from advanced gastric cancer patients. Ann Surg Oncol 2011;18:3013-3019. https://doi.org/10.1245/s10434-011-1636-0
  139. Han J, Lv P, Yu JL, Wu YC, Zhu X, Hong LL, et al. Circulating methylated MINT2 promoter DNA is a potential poor prognostic factor in gastric cancer. Dig Dis Sci 2014;59:1160-1168. https://doi.org/10.1007/s10620-013-3007-0
  140. Tokuhisa M, Ichikawa Y, Kosaka N, Ochiya T, Yashiro M, Hirakawa K, et al. Exosomal miRNAs from peritoneum lavage fluid as potential prognostic biomarkers of peritoneal metastasis in gastric cancer. PLoS One 2015;10:e0130472.
  141. Ohzawa H, Saito A, Kumagai Y, Kimura Y, Yamaguchi H, Hosoya Y, et al. Reduced expression of exosomal miR-29s in peritoneal fluid is a useful predictor of peritoneal recurrence after curative resection of gastric cancer with serosal involvement. Oncol Rep 2020;43:1081-1088. https://doi.org/10.3892/or.2020.7505
  142. Yang J, Cao W, Xing E. Levels and significance of tumor markers and cytokines in serum and peritoneal lavage fluid of patients with peritoneal metastasis of gastric cancer. BioMed Res Int 2022;2022:9528444.
  143. Park HS, Kwon WS, Park S, Jo E, Lim SJ, Lee CK, et al. Comprehensive immune profiling and immune-monitoring using body fluid of patients with metastatic gastric cancer. J Immunother Cancer 2019;7:268.
  144. Tanaka Y, Chiwaki F, Kojima S, Kawazu M, Komatsu M, Ueno T, et al. Multi-omic profiling of peritoneal metastases in gastric cancer identifies molecular subtypes and therapeutic vulnerabilities. Nat Can 2021;2:962-977. https://doi.org/10.1038/s43018-021-00240-6
  145. Wang R, Dang M, Harada K, Han G, Wang F, Pool Pizzi M, et al. Single-cell dissection of intratumoral heterogeneity and lineage diversity in metastatic gastric adenocarcinoma. Nat Med 2021;27:141-151. https://doi.org/10.1038/s41591-020-1125-8
  146. Yun J, Han SB, Kim HJ, Go SI, Lee WS, Bae WK, et al. Exosomal miR-181b-5p downregulation in ascites serves as a potential diagnostic biomarker for gastric cancer-associated malignant ascites. J Gastric Cancer 2019;19:301-314. https://doi.org/10.5230/jgc.2019.19.e27