DOI QR코드

DOI QR Code

Parametric study on multichannel analysis of surface waves-based nondestructive debonding detection for steel-concrete composite structures

  • Hongbing Chen (School of Civil and Resource Engineering, University of Science and Technology Beijing) ;
  • Shiyu Gan (Department of Civil Engineering, Tsinghua University) ;
  • Yuanyuan Li (Faculty of Infrastructure Engineering, Dalian University of Technology) ;
  • Jiajin Zeng (School of Civil and Resource Engineering, University of Science and Technology Beijing) ;
  • Xin Nie (Department of Civil Engineering, Tsinghua University)
  • 투고 : 2023.01.01
  • 심사 : 2023.11.14
  • 발행 : 2024.01.10

초록

Multichannel analysis of surface waves (MASW) method has exhibited broad application prospects in the nondestructive detection of interfacial debonding in steel-concrete composite structures (SCCS). However, due to the structural diversity of SCCS and the high stealthiness of interfacial debonding defects, the feasibility of MASW method needs to be investigated in depth. In this study, synthetic parametric study on MASW nondestructive debonding detection for SCCSs is performed. The aim is to quantitatively analyze influential factors with respect to structural composition of SCCS and MASW measurement mode. First, stress wave composition and propagation process in SCCS are studied utilizing 2D numerical simulation. For structural composition in SCCS, the thickness variation of steel plate, concrete core, and debonding defects are discussed. To determine the most appropriate sensor arrangement for MASW measurement, the effects of spacing and number of observation points, along with distances between excitation points, nearest boundary, as well as the first observation point, are analyzed individually. The influence of signal type and frequency of transient excitation on dispersion figures from forwarding analysis is studied to determine the most suitable excitation signal. The findings from this study can provide important theoretical guidance for MASW-based interfacial debonding detection for SCCS. Furthermore, they can be instrumental in optimizing both the sensor layout design and signal choice for experimental validation.

키워드

과제정보

The authors gratefully acknowledge the supports provided by the National Key R&D Program of China (Grant No. 2021YFF0501002), National Natural Science Foundation of China (Grant Nos. 52192662, 52020105005, 51908320), Beijing Nova Program (Grant No. 20220484012), Interdisciplinary Research Project for Young Teachers of USTB (Fundamental Research Funds for the Central Universities, FRF-IDRY-22-013) and Key Laboratory for Intelligent Infrastructure and Monitoring of Fujian Province (Huaqiao University).

참고문헌

  1. Beena, K., Shruti, S., Sandeep, S. and Naveen, K. (2017), "Monitoring degradation in concrete filled steel tubular sections using guided waves", Smart. Struct. Syst., 19(4), 371-382. https://doi.org/10.12989/sss.2017.19.4.371.
  2. Biscaia, H., Franco, N. and Chastre, C. (2018), "Stainless steel bonded to concrete: An experimental assessment using the DIC technique", Int. J. Concr. Struct. Mater., 12, 1-20. https://doi.org/10.1186/s40069-018-0229-8.
  3. Chen, H.B., Nie, X., Gan, S.Y., Zhao, Y.D. and Qiu, H.H. (2021), "Interfacial imperfection detection for steel-concrete composite structures using NDT techniques: a state-of-the-art review", Eng. Struct., 245, 112778.
  4. Chen, H.B., Xu, B., Zhou, T.M. and Mo, Y.L. (2019), "Debonding detection for rectangular CFST using surface wave measurement: Test and multi-physical fields numerical simulation", Mech. Syst. Signal Proc., 117, 238-254. https://doi.org/10.1016/j.ymssp.2018.07.047.
  5. Chen, H.B., Zhou, M., Gan, S.Y., Nie, X., Xu, B. and Mo, Y.L. (2021), "Review of wave method-based non-destructive testing for steel-concrete composite structures: multiscale simulation and multi-physics coupling analysis", Constr. Build. Mater., 302, 123832. https://doi.org/10.1016/j.conbuildmat.2021.123832.
  6. Dong, W., Wu, Z.M., Zhou, X.M. and Tan, Y.J. (2016), "Experimental studies on void detection in concrete-filled steel tubes using ultrasound", Constr. Build. Mater., 128, 154-162. https://doi.org/10.1016/j.conbuildmat.2016.10.061.
  7. Duan, L.L., Chen, H.B., Nie, X. and Han, S.W. (2020), "Experimental study on steel-concrete composite beams with Uplift-restricted and slip-permitted screw-type (URSP-S) connectors", Steel Compos. Struct., 35(2), 261-278. https://doi.org/10.12989/scs.2020.35.2.000.
  8. Fulop, L., Tuhti, A. and Ferreira, M. (2016), "Detection capability of NDE methods in steel-concrete-steel composite elements", Proceedings of 12th International Conference on Non-destructive Evaluation in Relation to Structural Integrity for Nuclear and Pressurized Components, Dubrovnik, Croatia, October 4-6.
  9. Gomez, P., Fernandez, J.P. and Garcia, P.D. (2011), "Lamb waves and dispersion curves in plates and its applications in NDE experiences using Comsol Multiphysics", Proceedings of 2011 Comsol Conference, Stuttgart, Germany, October 26-28.
  10. Guo, C. and Lu, Z.R. (2020), "CFST rib with circumferential gap and SWS composite defects", IJST-T Civ. Eng., 45, 1-16. https://doi.org/10.1007/s40996-020-00434-5.
  11. Lee, F.W., Lim, K.S. and Chai, H.K. (2016), "Determination and extraction of Rayleigh-waves for concrete cracks characterization based on matched filtering of center of energy", J. Sound Vib., 363, 303-315. https://doi.org/10.1016/j.jsv.2015.11.004.
  12. Li, D.S., Chen, Z., Feng, Q.M. and Wang, Y.L. (2015), "Damage analysis of CFRP-confined circular concrete-filled steel tubular columns by acoustic emission techniques", Smart Mater. Struct., 24, 1-11. https://doi.org/10.1088/0964-1726/24/8/085017.
  13. Li, X.Q., Luo, M.Z., Hei, C. and Song, G.B. (2019), "Quantitative evaluation of debond in concrete-filled steel tubular member (CFSTM) using piezoceramic transducers and ultrasonic head wave amplitude", Smart Mater. Struct., 28, 1-12. https://doi.org/10.1088/1361-665x/ab1f27.
  14. Liang, Y.B., Li, D.S., Parvasi, S.M., Kong, Q.Z., Lim, I. and Song, G.B. (2016), "Bond-slip detection of concrete-encased composite structure using electro-mechanical impedance technique", Smart Mater. Struct., 25, 1-11. https://doi.org/10.1088/0964-1726/25/9/095003.
  15. Luan, L.L., Xu, B., Chen, H.B. and Wang, H.D. (2021), Local wave propagation analysis in concrete-filled steel tubes with spectral element method using absorbing layers-Part II: Application in coupling system, Mech. Syst. Sig. Process., 146, 1-15. https://doi.org/10.1016/j.ymssp.2020.107004.
  16. Miller, G.F. and Pursey, H. (1955), "On the partition of energy between elastic waves in a semi-infinite solid", Proc. R. Soc. London. Ser. A, 233(1192), 55-69. https://doi.org/10.1098/rspa.1955.0245.
  17. Pan, S.S., Zhu, Y.X., Li, D.S. and Mao, J. (2018), "Interface separation detection of concrete-filled steel tube using a distributed temperature measuring system", Appl. Sci., 8, 1-19. https://doi.org/10.3390/app8091653.
  18. Qin, F., Kong, Q.Z., Li, M., Mo, Y.L., Song G.B. and Fan, F. (2015), "Bond slip detection of steel plate and concrete beams using smart aggregates", Smart Mater. Struct., 24, 1-14. https://doi.org/10.1088/0964-1726/24/11/115039.
  19. Schaal, C., Samajder, H., Baid, H. and Mal, A. (2015), "Rayleigh to Lamb wave conversion at a delamination-like crack", J. Sound Vib., 353, 150-163. https://doi.org/10.1016/j.jsv.2015.05.016.
  20. Sharma, S. and Mukherjee, A. (2013), "Nondestructive evaluation of corrosion in varying environments using guided waves", Res. Nondestr. Eval., 24, 63-88. https://doi.org/10.1080/09349847.2012.699609.
  21. Shen, Y., Hirose, S. and Yamaguchi, Y. (2014), "Dispersion of ultrasonic surface waves in a steel-epoxy-concrete bonding layered medium based on analytical, experimental, and numerical study, Case Stud. Nondestr". Test. Eval., 2, 49-63. https://doi.org/10.1016/j.csndt.2014.07.002.
  22. Song, H. and Popovics, J.S. (2017), "Characterization of steel-concrete interface bonding conditions using attenuation characteristics of guided waves", Cem. Concr. Compos., 83, 111-124. https://doi.org/10.1016/j.cemconcomp.2017.07.001.
  23. Vasiljevic, M., Kundu, T., Grill, W. and Twerdowski, E. (2008), Pipe wall damage detection by electromagnetic acoustic transducer generated guided waves in absence of defect signals, J. Acoust. Soc. Am., 123, 2591-2597. https://doi.org/10.1121/1.2902188.
  24. Xu, B., Chen, H.B. and Xia, S. (2017), "Numerical study on the mechanism of active interfacial debonding detection for rectangular CFSTs based on wavelet packet analysis with piezoceramics", Mech. Syst. Signal Proc., 86, 108-121. https://doi.org/10.1016/j.ymssp.2016.10.002.
  25. Xu, B., Chen, H.B., Mo, Y.L. and Zhou, T.M. (2018), "Dominance of debonding defect of CFST on PZT sensor response considering the meso-scale structure of concrete with multi-scale simulation", Mech. Syst. Signal Proc., 107, 515-528. https://doi.org/10.1016/j.ymssp.2018.01.041.
  26. Xu, B., Luan, L.L., Chen, H.B. and Ge, H.B. (2018), "Numerical study on interface debonding detection mechanisms with 2D spectral element method for concrete-filled steel tube using embedded PZT sensor", Smart Mater. Struct., 27, 1-17. https://doi.org/10.1088/1361-665x/aae23b.
  27. Xu, B., Luan, L.L., Chen, H.B. and Wang, H.D. (2020), "Local wave propagation analysis in concrete-filled steel tube with spectral element method using absorbing layers-Part I: Approach and validation", Mech. Syst. Sig. Process., 140, 1-15. https://doi.org/10.1016/j.ymssp.2020.106644.
  28. Xu, Y., Luo, M.Z., Hei, C. and Song, G.B. (2018), "Quantitative evaluation of compactness of concrete-filled fiber-reinforced polymer tubes using piezoceramic transducers and time difference of arrival", Smart Mater. Struct., 27, 1-10. https://doi.org/10.1088/1361-665x/aa9dd0.
  29. Zeng, L., Parvasi, S.M., Kong, Q.Z., Huo, L.S., Lim I., Li, M. and Song, G.B. (2015), "Bond slip detection of concrete-encased composite structure using shear wave based active sensing approach", Smart Mater. Struct., 24, 1-11. https://doi.org/10.1088/0964-1726/24/12/125026.
  30. Zhang, D.F. and Wang, Y.S. (2009), "Study of impact-echo method detection in arch bridge of concrete-filled steel tube", Chinese J. Eng. Geogr., 6, 364-367. https://doi.org/10.3969/j.issn.1672-940.2009.03.021.
  31. Zhou, Y., Liu, M. and Yi, W. (2017), "Diagnosis of interface debonding in steel-concrete composite structures using air-coupled impact resonance test", The 7th Academic Conference on structural vibration control and health monitoring in China, Wuhan, China, November 10-12.
  32. Zhou, Y., Liu, M. and Yi, W. (2018), "Diagnosis of interface debonding in composite structures using air-coupled impact resonance test", The 7th Word Conference on Structural Control and Monitoring(7WCSCM), Qingdao, China, July 22-25.
  33. Zima, B. and Rucka, M. (2017), "Guided wave propagation for assessment of adhesive bonding between steel and concrete", Procedia Eng., 199, 2300-2305. https://doi.org/10.1016/j.proeng.2017.09.189.
  34. Zou, Q.Q. and Yan, B.F. (2018), "Impact acoustic-based identification method for detecting interfacial debonding of steel-concrete composite slab", J. Railway Sci. Eng., 15, 668-676. https://doi.org/10.19713/j.cnki.43-1423/u.2018.03.017.