DOI QR코드

DOI QR Code

Free vibration analysis of sandwich cylindrical panel composed of graphene nanoplatelets reinforcement core integrated with Piezoelectric Face-sheets

  • Khashayar Arshadi (Faculty of Mechanical Engineering, Department of Solid Mechanics, University of Kashan) ;
  • Mohammad Arefi (Faculty of Mechanical Engineering, Department of Solid Mechanics, University of Kashan)
  • Received : 2021.12.08
  • Accepted : 2023.08.29
  • Published : 2024.01.10

Abstract

In this paper, the modified couple stress theory (MCST) and first order shear deformation theory (FSDT) are employed to investigate the free vibration and bending analyses of a three-layered micro-shell sandwiched by piezoelectric layers subjected to an applied voltage and reinforced graphene nanoplatelets (GPLs) under external and internal pressure. The micro-shell is resting on an elastic foundation modeled as Pasternak model. The mixture's rule and Halpin-Tsai model are utilized to compute the effective mechanical properties. By applying Hamilton's principle, the motion equations and associated boundary conditions are derived. Static/ dynamic results are obtained using Navier's method. The results are validated with the previously published works. The numerical results are presented to study and discuss the influences of various parameters on the natural frequencies and deflection of the micro-shell, such as applied voltage, thickness of the piezoelectric layer to radius, length to radius ratio, volume fraction and various distribution pattern of the GPLs, thickness-to-length scale parameter, and foundation coefficients for the both external and internal pressure. The main novelty of this work is simultaneous effect of graphene nanoplatelets as reinforcement and piezoelectric layers on the bending and vibration characteristics of the sandwich micro shell.

Keywords

References

  1. Abbas, S.Z., Waqas, M., Thaljaoui, A., Zubair, M., Riahi, A., Chu, Y.M. and Khan, W.A. (2022), "Modeling and analysis of unsteady second-grade nanofluid flow subject to mixed convection and thermal radiation", Soft Comput., 26(3), 1033-1042. https://doi.org/10.1007/s00500-021-06575-7.
  2. Adab, N. and Arefi, M. (2022), "Vibrational behavior of truncated conical porous GPL-reinforced sandwich micro/nano-shells", Eng. Comput., https://doi.org/10.1007/s00366-021-01580-8.
  3. Adab, N., Arefi, M. and Amabili, M. (2022), "A comprehensive vibration analysis of rotating truncated sandwich conical microshells including porous core and GPL-reinforced face-sheets", Compos. Struct, 279, 114761. https://doi.org/10.1016/j.compstruct.2021.114761.
  4. Adnan, U.K. Ahmed, N. and Mohyud-Din, S.T. (2020), "γ-nanofluid thermal transport between parallel plates suspended by micro-cantilever sensor by incorporating the effective Prandtl model: applications to biological and medical sciences", Molecules, 25(8), 1777. https://doi.org/10.3390/molecules25081777.
  5. Arefi, M. (2013), "Nonlinear thermoelastic analysis of thick-walled functionally graded piezoelectric cylinder", Acta. Mech., 224(11), 2771-2783. https://doi.org/10.1007/s00707-013-0888-0.
  6. Arefi, M. and Adab, N. (2021), "Coupled stress based formulation for static and dynamic analyses of a higher-order shear and normal deformable FG-GPL reinforced microplates", Wave. Rand. Complex Media., https://doi.org/10.1080/17455030.2021.1989084.
  7. Arefi, M. and Allam, M.N.M. (2015), "Nonlinear responses of an arbitrary FGP circular plate resting on foundation", Smart. Struct. Syst. 16(1), 81-100. https://doi.org/10.12989/sss.2015.16.1.081.
  8. Arefi, M. and Amabili, M. (2021), "A comprehensive electro-magneto-elastic buckling and bending analyses of three-layered doubly curved nanoshell, based on nonlocal three-dimensional theory", Compos. Struct. 257(1), 113100. https://doi.org/10.1016/j.compstruct.2020.113100.
  9. Arefi, M. and Najafitabar, F. (2021), "Buckling and free vibration analyses of a sandwich beam made of a soft core with FG-GNPs reinforced composite face-sheets using Ritz Method", Thin. Wall. Struct., 158, 107200. https://doi.org/10.1016/j.tws.2020.107200.
  10. Arefi, M. and Rahimi, G.H. (2010), "Thermo elastic analysis of a functionally graded cylinder under internal pressure using first order shear deformation theory", Sci. Res. Essays., 5(12), 1442-1454. https://doi.org/10.5897/SRE.9000953
  11. Arefi, M. and Rahimi, G.H. (2012a), "Comprehensive thermoelastic analysis of a functionally graded cylinder with different boundary conditions under internal pressure using first order shear deformation theory", Mechanika, 18(1), 5-13. https://doi.org/10.5755/j01.mech.18.1.1273.
  12. Arefi, M. and Rahimi, G.H. (2012b), "Three-dimensional multi-field equations of a functionally graded piezoelectric thick shell with variable thickness, curvature and arbitrary nonhomogeneity", Acta. Mech., 223(1), 63-79. https://doi.org/10.1007/s00707-011-0536-5.
  13. Arefi, M. and Zenkour, A.M. (2016), "A simplified shear and normal deformations nonlocal theory for bending of functionally graded piezomagnetic sandwich nanobeams in magneto-thermo-electric environment", J. Sandw. Struct. Mater., 18(5), 624-651. https://doi.org/10.1177/1099636216652581.
  14. Arefi, M. and Zenkour, A.M. (2017), "Transient analysis of a three-layer microbeam subjected to electric potential", Int. J. Smart. Nano. Mater., 8(1), 20-40. https://doi.org/10.1080/19475411.2017.1292967.
  15. Arefi, M. and Zenkour, A.M. (2019a), "Influence of magneto-electric environments on size-dependent bending results of three-layer piezomagnetic curved nanobeam based on sinusoidal shear deformation theory", J. Sandw. Struct. Mater, 21(8), 2751-2778. https://doi.org/10.1177/1099636217723186.
  16. Arefi, M. and Zenkour, A.M. (2019b), "Effect of thermo-magneto-electro-mechanical fields on the bending behaviors of a three-layered nanoplate based on sinusoidal shear-deformation plate theory", J. Sandw. Struct. Mater., 21(2), 639-669. https://doi.org/10.1177/1099636217697497.
  17. Arefi, M. Kiani, M. and Zamani, M.H. (2020), "Nonlocal strain gradient theory for the magneto-electro-elastic vibration response of a porous FG-core sandwich nanoplate with piezomagnetic face sheets resting on an elastic foundation", J. Sandw. Struct. Mater. 22(7), 2157-2185. https://doi.org/10.1177/1099636218795378.
  18. Arefi, M., Bidgoli, E.M.-R., Dimitri, R., Tornabene, F. and Reddy, J.N. (2019a), "Size-dependent free vibrations of FG polymer composite curved nanobeams reinforced with graphene nanoplatelets resting on Pasternak foundations", Appl. Sci., 9(8), 1580. https://doi.org/10.3390/app9081580.
  19. Arefi, M., Bidgoli, E.M.R. and Rabczuk, T. (2019b), "Effect of various characteristics of graphene nanoplatelets on thermal buckling behavior of FGRC micro plate based on MCST", Eur. J. Mech. A/Solids, 77, 103802. https://doi.org/10.1016/j.euromechsol.2019.103802.
  20. Arefi, M., Karroubi, R. and Irani-Rahaghi, M. (2016), "Free vibration analysis of functionally graded laminated sandwich cylindrical shells integrated with piezoelectric layer", APPL Math Mech. Engl, 37(7), 821-834. https://doi.org/10.1007/s10483-016-2098-9.
  21. Arefi, M., Moghaddam, S.K., Bidgoli, E.M.R., Kiani, M. and Civalek, O. (2021a), "Analysis of graphene nanoplatelet reinforced cylindrical shell subjected to thermo-mechanical loads", Compos. Struct, 255, 112924. https://doi.org/10.1016/j.compstruct.2020.112924.
  22. Arefi, M., Mohammadi, M., Amir-Ahmadi, S. and Rabczuk, T. (2019c), "FSDT electro-elastic analysis of FG-CNTRC cylindrical three-layered pressure vessels with piezoelectric face-sheets", Thin-Walled Struct, 144, 106320. https://doi.org/10.1016/j.tws.2019.106320.
  23. Arefi, M., Rahimi, G.H. and Khoshgoftar, M.J. (2012), "Exact solution of a thick walled functionally graded piezoelectric cylinder under mechanical, thermal and electrical loads in the magnetic field", Smart. Struct. Syst. 9(5), 427-439. https://doi.org/10.12989/sss.2012.9.5.427.
  24. Arefi, M., Tabatabaeian, A. and Mohammadi, M. (2021b), "Bending and stress analysis of polymeric composite plates reinforced with functionally graded graphene platelets based on sinusoidal shear-deformation plate theory", Def. Technol., 17(1), 64-74. https://doi.org/10.1016/j.dt.2020.01.003.
  25. Bai, B. Bai, F. Nie, Q. and Jia, X. (2023), "A high-strength red mud-fly ash geopolymer and the implications of curing temperature", Powder. Tech., 416, 118242. https://doi.org/10.1016/j.powtec.2023.118242.
  26. Bai, B. Jiang, S. Liu, L. Li, X. and Wu, H. (2021), "The transport of silica powders and lead ions under unsteady flow and variable injection concentrations", Powder. Tech., 387, 22-30. https://doi.org/10.1016/j.powtec.2021.04.014.
  27. Bai, B. Wang, J. Zhai, Z. and Xu, T. (2017), "The penetration processes of red mud filtrate in a porous medium by seepage", Trans. Porous. Media., 117, 207-227. https://doi.org/10.1007/s11242-017-0829-9.
  28. Bai, B. Xu, T. Nie, Q. and Li, P. (2020), "Temperature-driven migration of heavy metal Pb2+ along with moisture movement in unsaturated soils", Int. J. Heat. Mass; Transfer., 153, 119573. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119573.
  29. Chen, C., Shen, Y. and Liang, X. (1999), "Three dimensional analysis of piezoelectric circular cylindrical shell of finite length", Acta Mech, 134(3), 235-249. https://doi.org/10.1007/BF01312657.
  30. Chen, L., Zhao, Y., Jing, J. and Hou, H. (2023). "Microstructural evolution in graphene nanoplatelets reinforced magnesium matrix composites fabricated through thixomolding process", J. Alloys. Comp., 940, 168824. https://doi.org/10.1016/j.jallcom.2023.168824.
  31. Chen, L., Zhao, Y., Li, M., Li, L., Hou, L. and Hou, H. (2021), "Reinforced AZ91D magnesium alloy with thixomolding process facilitated dispersion of graphene nanoplatelets and enhanced interfacial interactions", Mater. Sci. Eng. A., 804, 140793. https://doi.org/10.1016/j.msea.2021.140793.
  32. Chu, Y.M., Hashmi, M.S., Khan, N., Khan, S.U., Khan, M.I., Kadry, S. and Abdelmalek, Z. (2020b), "Thermophoretic particles deposition features in thermally developed flow of Maxwell fluid between two infinite stretched disks", J. Mater. Res. Tech.-JMR&T, 9(6), 12889-12898. https://doi.org/10.1016/j.jmrt.2020.09.011.
  33. Chu, Y.M., Shah, F., Khan, M.I., Kadry, S., Abdelmalek, Z. and Khan, W.A. (2020a), "Cattaneo-Christov double diffusions (CCDD) in entropy optimized magnetized second grade nanofluid with variable thermal conductivity and mass diffusivity", J. Mater. Res. Tech.-JMR&T, 9(6), 13977-13987. https://doi.org/10.1016/j.jmrt.2020.09.101.
  34. Chung, J.D. Ramzan, M. and Gul, H. (2021), "Partially ionized hybrid nanofluid flow with thermal stratification", J. Mater. Res. Tech.-JMR&T., 11, 1457-1468. https://doi.org/10.1016/j.jmrt.2021.01.095.
  35. Dai, Z., Zhang, L., Bolandi, S.Y. and Habibi, M. (2021), "On the vibrations of the non-polynomial viscoelastic composite open-type shell under residual stresses", Compos. Struct., 263, 113599. https://doi.org/10.1016/j.compstruct.2021.113599.
  36. Dehsaraji, M. L., Arefi, M. and Loghman, A. (2021), "Size dependent free vibration analysis of functionally graded piezoelectric micro/nano shell based on modified couple stress theory with considering thickness stretching effect", Def. Technol., 17(1), 119-134. https://doi.org/10.1016/j.dt.2020.01.001.
  37. Fan, W., Liu, T., Wu, F., Wang, S., Ge, S., Li, Y. and Li, Y. (2023), "An antisweat interference and highly sensitive temperature sensor based on poly (3, 4-ethylenedioxythiophene)-poly (styrenesulfonate) fiber coated with polyurethane/Graphene for real-time monitoring of body temperature", ACS. Nano., 17(21), 21073-21082. https://doi.org/10.1021/acsnano.3c04246.
  38. Fan, W., Wang, Q., Rong, K., Shi, Y., Peng, W., Li, H. and Ge, S. (2024), "MXene enhanced 3D needled waste denim felt for high-performance flexible supercapacitors", Nano. Micro. Let., 16(1), 36. https://doi.org/10.1007/s40820-023-01226-y.
  39. Foong, S.Y., Liew, R.K., Yang, Y., Cheng, Y.W., Yek, P.N.Y., Mahari, W.A.W. and Lam, S.S. (2020), "Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions", Chem. Eng. J., 389, 124401. https://doi.org/10.1016/j.cej.2020.124401.
  40. Gao, S., Li, H., Huang, H. and Kang, R. (2022), "Grinding and lapping induced surface integrity of silicon wafers and its effect on chemical mechanical polishing", Appl. Surface. Sci., 599, 153982. https://doi.org/10.1016/j.apsusc.2022.153982.
  41. Ge-JiLe, H., Javid, K., Khan, S.U., Raza, M., Khan, M.I. and Qayyum, S. (2021), "Double diffusive convection and Hall effect in creeping flow of viscous nanofluid through a convergent microchannel: a biotechnological applications", Comput. Meth. Biomech. Biomed. Eng., 24(12), 1326-1343. https://doi.org/10.1080/10255842.2021.1888373.
  42. Ge-JiLe, H., Waqas, H., Khan, S.U., Khan, M.I., Farooq, S. and Hussain, S. (2021), "Three-dimensional radiative bioconvective flow of a Sisko nanofluid with motile microorganisms", Coatings, 11(3), 335. https://doi.org/10.3390/coatings11030335.
  43. Ge, S., Foong, S.Y., Ma, N.L., Liew, R.K., Mahari, W.A.W., Xia, C. and Lam, S.S. (2020b), "Vacuum pyrolysis incorporating microwave heating and base mixture modification: an integrated approach to transform biowaste into eco-friendly bioenergy products", Renew. Sust. Energy. Rev., 127, 109871. https://doi.org/10.1016/j.rser.2020.109871.
  44. Ge, S., Ma, N.L., Jiang, S., Ok, Y.S., Lam, S.S., Li, C. and Sonne, C. (2020a), "Processed bamboo as a novel formaldehyde-free high-performance furniture biocomposite", ACS. Appl. Mater. Interf., 12(27), 30824-30832. https://doi.org/10.1021/acsami.0c07448.
  45. Ghannad, M., Rahimi, G.H. and Nejad, M.Z. (2013), "Elastic analysis of pressurized thick cylindrical shells with variable thickness made of functionally graded materials", Compos. B. Eng., 45(1), 388-396. https://doi.org/10.1016/j.compositesb.2012.09.043.
  46. Ghorbanpour-Arani, A.A., Khoddami Maraghi, Z. and Ghorbanpour Arani, A. (2023), "The frequency response of intelligent composite sandwich plate under biaxial in-plane forces", J. Solid. Mech., 15(1), 1-18. https://doi.org/10.22034/jsm.2020.1895607.1563.
  47. Ha, F. Kadry, S. Chu, Y-M et. al.,( 2020), "Modeling and theoretical analysis of gyrotactic microorganisms in radiated nanomaterial Williamson fluid with ac tivation energy", J. Mater. Res. Tech.-JMR&T, 9(5), 10468-10477.https://doi.org/10.1016/j.jmrt.2020.07.025.
  48. Haghparast, E., Ghorbanpour-Arani, A. and Ghorbanpour Arani, A. (2020), "Effect of fluid-structure interaction on vibration of moving sandwich plate with balsa wood core and nanocomposite face sheets", Int. J. Appl. Mech., 12(07), 2050078. https://doi.org/10.1142/S1758825120500787.
  49. Hao, R., Lu, Z., Ding, H. and Chen, L. (2023), "Shock isolation of an orthogonal six-DOFs platform with high-static-low-dynamic stiffness", J. Appl. Mech., 90(11), https://doi.org/111004.10.1115/1.4062886.
  50. Huang, S., Huang, M. and Lyu, Y. (2021b), "Seismic performance analysis of a wind turbine with a monopile foundation affected by sea ice based on a simple numerical method", Eng. Appl. Comput. Fluid. Mech., 15(1), 1113-1133. https://doi.org/10.1080/19942060.2021.1939790
  51. Huang, X., Hao, H., Oslub, K., Habibi, M. and Tounsi, A. (2022), "Dynamic stability/instability simulation of the rotary size-dependent functionally graded microsystem", Eng. Comput. 38 (Suppl 5), 4163-4179. https://doi.org/10.1007/s00366-021-01399-3.
  52. Huang, X., Hao, H., Oslub, K., Habibi, M. and Tounsi, A. (2022), "Dynamic stability/instability simulation of the rotary size-dependent functionally graded microsystem", Eng. Comput., 38, (Suppl 5), 4163-4179. https://doi.org/10.1007/s00366-021-01399-3.
  53. Huang, Y., Karami, B., Shahsavari, D. and Tounsi, A. (2021a), "Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels", Archiv. Civ. Mech. Eng., 21, 139. https://doi.org/10.1007/s43452-021-00291-7.
  54. Ibrahim, M., Saeed, T. and Riahi Bani, F. (2021), "Two-phase analysis of heat transfer and entropy generation of water-based magnetite nanofluid flow in a circular microtube with twisted porous blocks under a uniform magnetic field", Powder Tech., 384, 522-541. https://doi.org/10.1016/j.powtec.2021.01.077.
  55. Ikram, M.D., Imran, M.A., Chu, Y-M. and Akgul, A. (2022), "MHD flow of a Newtonian fluid in symmetric channel with ABC fractional model containing hybrid nanoparticles", Comb. Chem. High Through. Scr., 25(7), 2087-1102. https://doi.org/10.2174/1386207324666210412122544.
  56. Jiang, W., Wang, H., Xie, W. and Qu, Z. (2023), "Lithography Alignment Techniques Based on Moire Fringe", Photonics, 10(4), 351. https://doi.org/10.3390/photonics10040351.
  57. Karroubi, R. and Irani-Rahaghi, M. (2019), "Rotating sandwich cylindrical shells with an FGM core and two FGPM layers: free vibration analysis", Appl. Math. Mech, 40(4), 563-578. https://doi.org/10.1007/s10483-019-2469-8.
  58. Khan, U., Zaib, A., Waini, I., Ishak, A., Sherif, E.S.M., Xia, W.F. and Muhammad, N. (2022), "Impact of Smoluchowski temperature and Maxwell velocity slip conditions on axisymmetric rotated flow of hybrid nanofluid past a porous moving rotating disk", Nanomaterials, 12(2), 276. https://doi.org/10.3390/nano12020276.
  59. Khoshgoftar, M. Rahimi, M.J. and Arefi, G.H. (2013), "Exact solution of functionally graded thick cylinder with finite length under longitudinally non-uniform pressure", Mech. Res. Com., 51, 61-66. https://doi.org/10.1016/j.mechrescom.2013.05.001.
  60. Kong, L., Liu, Y., Dong, L., Zhang, L., Qiao, L., Wang, W. and You, H. (2020), "Enhanced red luminescence in CaAl12O19:Mn4+via doping Ga3+ for plant growth lighting", Dalton. Transac., 49(6), 1947-1954. https://doi.org/10.1039/C9DT04086B.
  61. Lam, S.S., Yek, P.N.Y., Ok, Y.S., Chong, C.C., Liew, R.K., Tsang, D.C. and Peng, W. (2020), "Engineering pyrolysis biochar via single-step microwave steam activation for hazardous landfill leachate treatment", J. Hazard. Mater., 390, 121649. https://doi.org/10.1016/j.jhazmat.2019.121649.
  62. Le, T.C., Nguyen, K.D., Minh, H.L., Vu, P.P., Trong, P.N. and Tounsi, A. (2022), "Nonlinear bending analysis of porous sigmoid FGM nanoplate via IGA and nonlocal strain gradient theory", Adv. Nano. Res. 12(5), 441-455. https://doi.org/10.12989/anr.2022.12.5.441.
  63. Li, J., Tang, F. and Habibi, M. (2022), "Bi-directional thermal buckling and resonance frequency characteristics of a GNP-reinforced composite nanostructure", Eng. Comput. 38, 1559-1580. https://doi.org/10.1007/s00366-020-01110-y.
  64. Li, M., Guo, Q., Chen, L., Li, L., Hou, H. and Zhao, Y. (2022), "Microstructure and properties of graphene nanoplatelets reinforced AZ91D matrix composites prepared by electromagnetic stirring casting", J. Mater. Res. Tech., 21, 4138-4150. https://doi.org/10.1016/j.jmrt.2022.11.033.
  65. Li, Y., Li, S., Guo, K., Fang, X. and Habibi, M. (2022), "On the modeling of bending responses of graphene-reinforced higher order annular plate via two-dimensional continuum mechanics approach", Eng. Comput. 38 (Suppl 1), 703-724. https://doi.org/10.1007/s00366-020-01166-w.
  66. Liang, J., Wang, Y., Huang, Y., Ma, Y., Liu, Z., Cai, J. and Chen, Y. (2009), "Electromagnetic interference shielding of graphene/epoxy composites", Carbon, 47(3), 922-925. https://doi.org/10.1016/j.carbon.2008.12.038.
  67. Liu, C., Ke, L. L., Wang, Y. S., Yang, J. and Kitipornchai, S. (2013), "Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory", Compos. Struct, 106, 167-174. https://doi.org/10.1016/j.compstruct.2013.05.031.
  68. Liu, D., Kitipornchai, S., Chen, W. and Yang, J. (2018), "Three-dimensional buckling and free vibration analyses of initially stressed functionally graded graphene reinforced composite cylindrical shell", Compos. Struct, 189, 560-569. https://doi.org/10.1016/j.compstruct.2018.01.106.
  69. Liu, G., Wu, S. Shahsavari, D., Karami, B., and Tounsi, A. (2022), "Dynamics of imperfect inhomogeneous nanoplate with exponentially-varying properties resting on viscoelastic foundation", Eur. J. Mech. A/Solids, 95, 104649. https://doi.org/10.1016/j.euromechsol.2022.104649.
  70. Liu, H., Shen, S., Oslub, K., Habibi, M. and Safarpour, H. (2022), "Amplitude motion and frequency simulation of a composite viscoelastic microsystem within modified couple stress elasticity", Eng. Comput., 38 (Suppl 5), 3977-3991. https://doi.org/10.1007/s00366-021-01316-8.
  71. Lu, Z., Wu, D., Ding, H. and Chen, L. (2021). "Vibration isolation and energy harvesting integrated in a Stewart platform with high static and low dynamic stiffness", Appl. Math. Modelling., 89, 249-267. https://doi.org/10.1016/j.apm.2020.07.060.
  72. Lund, L.A., Omar, Z., Dero, S., Chu, Y. and Khan, I. (2021), "Temporal stability analysis of magnetized hybrid nanofluid propagating through an unsteady shrinking sheet: partial slip conditions", Comput., Mater. Continua., 66(2), 1963-1975. https://doi.org/10.32604/cmc.2020.011976.
  73. Maouedj, R., Menni, Y., Inc, M., Chu, Y.M., Ameur, H. and Lorenzini, G. (2021), "Simulating the turbulent hydrothermal behavior of oil/MWCNT nanofluid in a solar channel heat exchanger equipped with vortex generators", Comput. Model. Eng. Sci., 126(3), 855-889. https://doi.org/10.32604/cmes.2021.014524.
  74. Mindlin, R.D. and Tiersten, H. (1962), Effects of Couple-Stresses in Linear Elasticity. Columbia Univ New York. https://doi.org/10.1007/BF00253946.
  75. Mingzheng, L.I.U., Changhe, L.I., Zhang, Y., Min, Y.A.N.G., Teng, G.A.O., Xin, C.U.I. and SHARMA, S. (2023a), "Analysis of grinding mechanics and improved grinding force model based on randomized grain geometric characteristics", Chin. J. Aeronaut., 36(7), 160-193 https://doi.org/10.1016/j.cja.2022.11.005.
  76. Mohammad-Rezaei Bidgoli, E. and Arefi, M. (2021), "Free vibration analysis of micro plate reinforced with functionally graded graphene nanoplatelets based on modified strain-gradient formulation", J. Sandw. Struct. Mater, 23(2), 436-472. https://doi.org/10.1177/1099636219839302.
  77. Mohammadi, M., Arefi, M. and Ahmadi, S.A. (2020), "Two-dimensional electro-elastic analysis of FG-CNTRC cylindrical laminated pressure vessels with piezoelectric layers based on third-order shear deformation theory", J. Press. Vessel Technol, 142(2), 021304. https://doi.org/10.1115/1.4043842.
  78. Mohammadi, M., Arefi, M., Dimitri, R. and Tornabene, F. (2019), "Higher-order thermo-elastic analysis of FG-CNTRC cylindrical vessels surrounded by a Pasternak foundation", Nanomaterials, 9(1), 79. https://doi.org/10.3390/nano9010079.
  79. Nazeer, M., Hussain, F., Ahmad, M.O., Saeed, S., Khan, M.I., Kadry, S. and Chu, Y.M. (2021), "Multiphase flow of Jeffrey Fluid bounded within magnetized horizontal surface", Surf. Interf.,, 22, 100846. https://doi.org/10.1016/j.surfin.2020.100846.
  80. Nazeer, M., Ijaz Khan, M. and Chu, Y.M. (2022), "Mathematical modeling of multiphase flows of third-grade fluid with lubrication effects through an inclined channel: analytical treatment", J. Disp. Sci. Tech., 43(10), 1555-1567. https://doi.org/10.1080/01932691.2021.1877557.
  81. Peng, W., Lam, S.S. and Sonne, C. (2020), "Support Austria's glyphosate ban", Science, 367, 6475, 257-258. https://doi.org/10.1126/science.aba5642.
  82. Qiao, W., Fu, Z., Du, M., Wei, N. and Liu, E. (2023), "Seasonal peak load prediction of underground gas storage using a novel two-stage model combining improved complete ensemble empirical mode decomposition and long short-term memory with a sparrow search algorithm", Energy, 274, 127376. https://doi.org/10.1016/j.energy.2023.127376.
  83. Rafiee, M.A., Rafiee, J., Srivastava, I., Wang, Z., Song, H., Yu, Z. Z. and Koratkar, N. (2010), "Fracture and fatigue in graphene nanocomposites", Small, 6(2), 179-183. https://doi.org/10.1002/smll.200901480.
  84. Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z. and Koratkar, N. (2009), "Enhanced mechanical properties of nanocomposites at low graphene content", ACS Nano, 3(12), 3884-3890. https://doi.org/10.1021/nn9010472.
  85. Rahimi, G.H., Arefi, M. and Khoshgoftar, M.J. (2012), "Electro elastic analysis of a pressurized thick-walled functionally graded piezoelectric cylinder using the first order shear deformation theory and energy method", Mechanics, 18(3), 292-300. https://doi.org/10.5755/j01.mech.18.3.1875.
  86. Ramesh, K., Khan, S.U., Jameel, M., Khan, M.I., Chu, Y.M. and Kadry, S. (2020), "Bioconvection assessment in Maxwell nanofluid configured by a Riga surface with nonlinear thermal radiation and activation energy", Surf. Interf., 21, 100749. https://doi.org/10.1016/j.surfin.2020.100749.
  87. Rao, L., Lin, C., Zhang, C. and Arefi, M. (2022), "Free vibration analysis of a cylindrical micro-shell based on MCST", Alex. Eng. J, 61(8), 6293-6303. https://doi.org/10.1016/j.aej.2021.11.058.
  88. Rasool, G., Shafiq, A., Chu, Y.M., Bhutta, M.S. and Ali, A. (2022), "Optimal homotopic exploration of features of Cattaneo-Christov model in second grade nanofluid flow via Darcy-Forchheimer medium subject to viscous dissipation and thermal radiation", Comb. Chem. High Through. Scr., 25(14), 2485-2497. https://doi.org/10.2174/1386207324666210903144447.
  89. Reddy, J.N. (1984), Energy And Variational Methods In Applied Mechanics: With An Introduction To The Finite Element Method. Wiley, New York, USA.
  90. Shamsabadi, E.A., Salehpour, M., Zandifaez, P. and Dias-da-Costa, D. (2023), "Data-driven multicollinearity-aware multi-objective optimisation of green concrete mixes", J. Clean. Prod., 390, 136103, https://doi.org/10.1016/j.jclepro.2023.136103.
  91. Shao, Y., Zhao, Y., Gao, J. and Habibi, M. (2021), "Energy absorption of the strengthened viscoelastic multi-curved composite panel under friction force", Archiv. Civ. Mech. Eng 21, 141. https://doi.org/10.1007/s43452-021-00279-3.
  92. Shen, H.S. (2001), "Postbuckling analysis of axially-loaded laminated cylindrical shells with piezoelectric actuators", Eur. J. Mech. A Solids, 20(6), 1007-1022. https://doi.org/10.1016/S0997-7538(01)01176-7.
  93. Sheng, G.G. and Wang, X. (2009), "Studies on dynamic behavior of functionally graded cylindrical shells with PZT layers under moving loads", J. Sound Vib, 323(3-5), 772-789. https://doi.org/10.1016/j.jsv.2009.01.017.
  94. Shi, X., Li, J. and Habibi, M. (2022), "On the statics and dynamics of an electro-thermo-mechanically porous GPLRC nanoshell conveying fluid flow", Mech. Based. Design. Struct. Mach., 50(6), 2147-2183. https://doi.org/10.1080/15397734.2020.1772088.
  95. Sun, Q., Lyu, G., Liu, X., Niu, F. and Gan, C. (2023b), "Virtual current compensation-based quasi-sinusoidal-wave excitation scheme for switched reluctance motor drives", IEEE. Trans. Indust. Elec., https://doi.org/10.1109/TIE.2023.3333056.
  96. Sun, Q., Zhu, M., Wang, Q., Zhu, C., Yang, J. and Li, W. (2023a), "Design of novel quasi-trivalent dual-main-phase Ce magnets with high performance by manipulating the chemical state of Ce", Acta. Mater., 246, 118703. https://doi.org/10.1016/j.actamat.2023.118703.
  97. Sun, Y., Fan, W., Song, C., Gao, X., Liu, T., Song, W. and Li, S. (2022), "Effects of stitch yarns on interlaminar shear behavior of three-dimensional stitched carbon fiber epoxy composites at room temperature and high temperature", Adv. Compos. Hybrid. Mater., 5(3), 1951-1965. https://doi.org/10.1007/s42114-022-00526-y.
  98. Toupin, R. (1962), "Elastic materials with couple-stresses", Arch Ration Mech. Anal., 11(1), 385-414. https://doi.org/10.1007/BF00253945.
  99. Wang, C., Su, J., Liu, T., Ge, S., Liew, R.K., Zhang, H. and Fan, W. (2023), "A sustainable strategy to transform cotton waste into renewable cellulose fiber self-reinforcing composite paper", J. Clean. Prod., 429, 139567. https://doi.org/10.1016/j.jclepro.2023.139567.
  100. Wang, D., Wang, X., Jin, M. L., He, P. and Zhang, S. (2022b), "Molecular level manipulation of charge density for solid-liquid TENG system by proton irradiation", Nano. Energy., 103, 107819. https://doi.org/10.1016/j.nanoen.2022.107819.
  101. Wang, Y., Liu, Y. and Zu, J.W. (2019), "Nonlinear free vibration of piezoelectric cylindrical nanoshells", Appl. Math. Mech., 40(5), 601-620. https://doi.org/10.1007/s10483-019-2476-6.
  102. Wang, Y., Zeng, R. and Safarpour, M. (2022a), "Vibration analysis of FG-GPLRC annular plate in a thermal environment", Mech. Based Des. Struct. Mach., 50(1), 352-370. https://doi.org/10.1080/15397734.2020.1719508.
  103. Waqas, M., Khan, M.I., Asghar, Z., Kadry, S., Chu, Y.M. and Khan, W.A. (2020), "Interaction of heat generation in nonlinear mixed/forced convective flow of Williamson fluid flow subject to generalized Fourier's and Fick's concept", J. Mater. Res. Tech.-JMR&T., 9(5), 11080-11086. https://doi.org/10.1016/j.jmrt.2020.07.068.
  104. Wei, N., Yin, C., Yin, L., Tan, J., Liu, J., Wang, S. and Zeng, F. (2024), "Short-term load forecasting based on WM algorithm and transfer learning model", Appl. Energy., 353, 122087. https://doi.org/10.1016/j.apenergy.2023.122087.
  105. Wei, N., Yin, L., Yin, C., Liu, J., Wang, S., Qiao, W. and Zeng, F. (2023), "Pseudo-correlation problem and its solution for the transfer forecasting of short-term natural gas loads", Gas. Sci. Eng., 119, 205133. https://doi.org/10.1016/j.jgsce.2023.205133.
  106. Wu, C.P. and Syu, Y.S. (2007), "Exact solutions of functionally graded piezoelectric shells under cylindrical bending", Int. J. Solids Struct., 44(20), 6450-6472. https://doi.org/10.1016/j.ijsolstr.2007.02.037.
  107. Wu, J. and Habibi, M. (2022), "Dynamic simulation of the ultrafast-rotating sandwich cantilever disk via finite element and semi-numerical methods", Eng. Comput., 38(Suppl 5), 4127-4143. https://doi.org/10.1007/s00366-021-01396-6.
  108. Xiang, Y., Lim, C.W. and Kitipornchai, S. (2003), "Axisymmetric vibration of cylindrical shells with intermediate ring supports", Int. J. Struct. Stab., 3(01), 35-53. https://doi.org/10.1142/S021945540300080X.
  109. Yan, Z., Hu, Q., Jiang, F., Lin, S., Li, R. and Chen, S. (2023), "Mechanism and technology evaluation of a novel alternating-arc-based directed energy deposition method through polarity-switching self-adaptive shunt", Add. Manuf., 67, 103504. https://doi.org/10.1016/j.addma.2023.103504.
  110. Yang, D., Wang, Y., Chen, C., Su, Y., Li, L., Miao, L. and Hu, D. (2023a), "Oriented plate-like KNbO3 polycrystals: topochemical mesocrystal conversion and piezoelectric and photocatalytic responses", Inorg. Chem., 62(26), 10408-10419. https://doi.org/10.1021/acs.inorgchem.3c01286.
  111. Yang, D., Wang, Y., Chen, C., Su, Y., Li, L., Miao, L. and Hu, D. (2021), "Mitigation of indoor air pollution: A review of recent advances in adsorption materials and catalytic oxidation", J. Hazard. Mater., 405, 124138. https://doi.org/10.1016/j.jhazmat.2020.124138.
  112. Yang, M., Wang, Y., Xiao, X. and Li, Y. (2023c), "A robust damping control for virtual synchronous generators based on energy reshaping", IEEE. Trans. Energy. Conv., 38(3), 2146-2159. https://doi.org/10.1109/TEC.2023.3260244.
  113. Yang, Y., Zhang, Z., Zhou, Y., Wang, C. and Zhu, H. (2023b), "Design of a simultaneous information and power transfer system based on a modulating feature of magnetron", IEEE. Trans. Microwave Theory. Tech., 71(2), 907-915. https://doi.org/10.1109/TMTT.2022.3205612.
  114. Yu, J., Xian, S., Zhang, Z., Hou, X., He, J., Mu, J. and Chou, X. (2023), "Synergistic piezoelectricity enhanced BaTiO3/polyacrylonitrile elastomer-based highly sensitive pressure sensor for intelligent sensing and posture recognition applications", Nano. Res., 16(4), 5490-5502. https://doi.org/10.1007/s12274-022-5084-x.
  115. Zamani, P., da Silva, L.F., Nejad, R.M., Moghaddam, D.G. and Soltannia, B. (2022), "Experimental study on mixing ratio effect of hybrid graphene nanoplatelet/nano-silica reinforcement on the static and fatigue life of aluminum-to-GFRP bonded joints under four-point bending", Compos. Struct., 300, 116108. https://doi.org/10.1016/j.compstruct.2022.116108.
  116. Zandifaez, P. Shamsabadi, E.A. Nezhad, A.A. Zhou, H. and Dias-da-Costa, D. (2023), "AI-Assisted optimisation of green concrete mixes incorporating recycled concrete aggregates", Const. Building. Mater., 391, 131851. https://doi.org/10.1016/j.conbuildmat.2023.131851.
  117. Zhang, H., Xiao, Y., Xu, Z., Yang, M., Zhang, L., Yin, L., ... & Cai, X. (2022b), "Effects of Ni-decorated reduced graphene oxide nanosheets on the microstructural evolution and mechanical properties of Sn-3.0Ag-0.5Cu composite solders", Intermetallics., 150, 107683. https://doi.org/10.1016/j.intermet.2022.107683.
  118. Zhang, J., Wang, X., Zhou, L., Liu, G., Adroja, D.T., Da Silva, I. and Jin, C. (2022c), "A Ferrotoroidic Candidate with Well-Separated Spin Chains", Adv. Mater. (Weinheim), 34(12), e2106728. https://doi.org/10.1002/adma.202106728.
  119. Zhang, M., Jiang, X. and Arefi, M. (2023), "Dynamic formulation of a sandwich microshell considering modified couple stress and thickness-stretching", Eur. Phys. J. Plus., 138(3), 227. https://doi.org/10.1140/epjp/s13360-023-03753-4.
  120. Zhang, X., Tang, Y., Zhang, F. and Lee, C. (2016), "A Novel Aluminum-Graphite Dual-Ion Battery". Adv. Energy. Mater., 6(11), 1502588. https://doi.org/10.1002/aenm.201502588.
  121. Zhang, Y., Shen, G., Lam, S.S., Ansar, S., Jung, S.C., Ge, S. and Fan, W. (2023), "A waste textiles-based multilayer composite fabric with superior electromagnetic shielding, infrared stealth and flame retardance for military applications", Chem. Eng. J., 471, 144679. https://doi.org/10.1016/j.cej.2023.144679.
  122. Zhang, Z., Sui, M., Li, C., Zhou, Z., Liu, B., Chen, Y. and Sharma, S. (2022a), "Residual stress of MoS2 nano-lubricant grinding cemented carbide", Int. J. Adv. Manuf. Tech. 119, 5671-5685. https://doi.org/10.1007/s00170-022-08660-z.
  123. Zhou, S., Zhou, G., He, M., Mao, S., Zhao, H. and Liu, G. (2023b), "Stability Effect of Different Modulation Parameters in Voltage-Mode PWM Control for CCM Switching DC-DC Converter", IEEE. Trans. Transport. Electrif., https://doi.org/10.1109/TTE.2023.3293811.
  124. Zhou, S., Zhou, G., Liu, X. and Zhao, H. (2023a), "Dynamic Freewheeling Control for SIDO Buck Converter with Fast Transient Performance, Minimized Cross-Regulation, and High Efficiency", IEEE. Trans. Indust. Electron., 70(2), 1467-1477. https://doi.org/10.1109/TIE.2022.3156169.
  125. Zhu, L., Li, Z. and Hou, K. (2022b), "Effect of radical scavenger on electrical tree in cross-linked polyethylene with large harmonic superimposed DC voltage", High. Volt., https://doi.org/10.1049/hve2.12302.
  126. Zhu, L., Ren, H., Habibi, M., Mohammed, K.J. and Khadimallah, M.A. (2022a), "Predicting the environmental economic dispatch problem for reducing waste nonrenewable materials via an innovative constraint multi-objective Chimp Optimization Algorithm", J. Clean. Prod., 365, 132697. https://doi.org/10.1016/j.jclepro.2022.132697.