DOI QR코드

DOI QR Code

패각 잔골재가 시멘트 모르타르 재료 특성에 미치는 영향 분석

Investigation of Waste Shell Fine Aggregates on the Material Characteristics of Cement Mortars

  • 투고 : 2023.11.23
  • 심사 : 2023.11.28
  • 발행 : 2024.02.01

초록

본 연구에서는 대표적인 해양 폐기물인 패각을 자원화하여 건설재료에 활용하고, 재료의 특성에 미치는 영향을 평가하였다. 꼬막, 굴 등 국내에서 많이 발생하는 패각을 세척 및 전처리하여 잔골재 대체재로서 활용하였으며, 패각의 대체율 및 세척 여부 등의 조건에 따라 시멘트 모르타르 시편을 제작하였다. 서로 다른 조건하에 타설된 모르타르 시편의 압축강도를 평가하고, XRD, SEM, micro-CT 등의 미세구조 분석 방법들을 활용하여 각 시편의 고체 및 공극 구조를 분석하였다. 결과를 통해, 굴과 꼬막 패각이 서로 다른 탄산칼슘의 동질이상으로 구성되어 있는 것을 확인하였으며, 각각의 미세구조 특성에 의해 잔골재 대체재로 활용 시, 모르타르의 역학적 물성 차이에 영향을 미치는 것을 확인하였다.

This study explores the utilization of common marine wastes, specifically seashells, such as oysters and cockles, as alternative fine aggregates in construction materials. The considered seashells were cleaned and pre-processed for use as a substitute for aggregate in mortar. Cement mortar specimens were prepared under different conditions, such as substitution ratios and the cleaning status of the seashells. The compressive strength of the mortars specimens was evaluated, and the solid and porous structures of each specimen were analyzed using microstructure analysis methods such as XRD, SEM, and micro-CT. The results confirmed that oyster and cockle seashells are composed of different calcium carbonate polymorphs, and their microstructural characteristics influence the mechanical properties of the cement mortar specimens.

키워드

과제정보

This research was supported by Korea Institute of Marine Science & Technology Promotion(KIMST) funded by the Ministry of Oceans and Fisheries, Korea(20220402).

참고문헌

  1. Dash, M. K., Patro, S. K. and Rath, A. K. (2016). "Sustainable use of industrial-waste as partial replacement of fine aggregate for preparation of concrete-A review." International Journal of Sustainable Built Environment, Elsevier, Vol. 5, No. 2, pp. 484-516, https://doi.org/10.1016/j.ijsbe.2016.04.006.
  2. Eo, S. H. and Yi, S. T. (2015). "Effect of oyster shell as an aggregate replacement on the characteristics of concrete." Magazine of Concrete Research, ICE, Vol. 67, No. 15, pp. 833-842, https://doi.org/10.1680/macr.14.00383.
  3. Eziefula, U. G., Ezeh, J. C. and Eziefula, B. I. (2018). "Properties of seashell aggregate concrete: A review." Construction and Building Materials, Elsevier, Vol. 192, pp. 287-300, https://doi.org/10.1016/j.conbuildmat.2018.10.096.
  4. Habert, G., Bouzidi, Y., Chen, C. and Jullien, A. (2010). "Development of a depletion indicator for natural resources used in concrete." Resources, Conservation and Recycling, Elsevier, Vol. 54, No. 6, pp. 364-376, https://doi.org/10.1016/j.resconrec.2009.09.002.
  5. Horiguchi, I., Mimura, Y. and Monteiro, P. J. (2021). "Plant-growing performance of pervious concrete containing crushed oyster shell aggregate." Cleaner Materials, Elsevier, Vol. 2, 100027, https://doi.org/10.1016/j.clema.2021.100027.
  6. Kim, P. G., Park, M. E. and Sung, K. Y. (2009). "Distribution of heavy metals in marine sediments at the ocean waste disposal site in the yellow sea, South Korea." Geosciences Journal, Springer, Vol. 13, No. 1, pp. 15-24, https://doi.org/10.1007/s12303-009-0002-8.
  7. Malik, M. I., Jan, S. R., Peer, J. A., Nazir, S. A. and Mohammad, K. F. (2015). "Study of concrete involving use of quarry dust as partial replacement of fine aggregates." IOSR Journal of Engineering, Vol. 5, No. 2, pp. 5-10.
  8. Ministry of Oceans and Fisheries(MOF) (2021). "Plans to recycle marine by-products such as oyster shells are being prepared." Available at: https://www.mof.go.kr/doc/ko/selectDoc.do?docSeq=39275&menuSeq=971&bbsSeq=10 (Accessed: October 26, 2023) (in Korean).
  9. Olivia, M., Oktaviani, R. and Ismeddiyanto. (2017). "Properties of concrete containing ground waste cockle and clam seashells." Procedia Engineering, Elsevier, Vol. 171, pp. 658-663, https://doi.org/10.1016/j.proeng.2017.01.404.
  10. Oral, C. M. and Ercan, B. (2018). "Influence of pH on morphology, size and polymorph of room temperature synthesized calcium carbonate particles." Powder Technology, Elsevier, Vol. 339, pp. 781-788, https://doi.org/10.1016/j.powtec.2018.08.066.
  11. Ponnada, M. R., Prasad, S. S. and Dharmala, H. (2016). "Compressive strength of concrete with partial replacement of aggregates with granite powder and cockle shell." Malaysian Journal of Civil Engineering, UTM, Vol. 28, No. 2, pp. 183-204, https://doi.org/10.11113/mjce.v28.15970.
  12. Ramakrishna, B. and Sateesh, A. (2016). "Exploratory study on the use of cockle shell as partial coarse and fine aggregate replacement in concrete." International Research Journal of Engineering and Technology, Fast Track Publications, Vol. 3, No. 6, pp. 2347-2349.
  13. Xie, A. J., Shen, Y. H., Zhang, C. Y., Yuan, Z. W., Zhu, X. M. and Yang, Y. M. (2005). "Crystal growth of calcium carbonate with various morphologies in different amino acid systems." Journal of Crystal Growth, Elsevier, Vol. 285, No. 3, pp. 436-443, https://doi.org/10.1016/j.jcrysgro.2005.08.039.