DOI QR코드

DOI QR Code

The impact of different shapes of aggregate and crumb rubber on the deformation properties of asphalt concrete

  • Felix N. Okonta (Department of Civil Engineering Science, University of Johannesburg) ;
  • Koketso Tshukutsoane (Department of Civil Engineering Science, University of Johannesburg) ;
  • Babak Karimi (Department of Civil Engineering Science, University of Johannesburg)
  • Received : 2022.06.11
  • Accepted : 2023.11.29
  • Published : 2024.01.10

Abstract

Bitumen and high-quality subangular aggregates, the two principal materials used for asphalt concrete construction, are finite and expensive materials. The general availability of crumb rubber and naturally occurring aggregates of different shapes, especially flat and elongated shapes, indicates that they are feasible alternative materials for expanding the volume of bitumen and utilizing a wider range of aggregate shapes for the development of asphalt concrete, with an associated environmental benefit. The study investigated the effect of adding up to 15% crumb rubber and aggregates sorted into different groups, i.e., rounded, elongated, flat, and their combinations, on the rheological and mechanical properties and durability of 50/70 of hot-mix asphalt pavement. The addition of crumb rubber decreased ductility and penetration but increased the softening point. For a 5.5% bitumen content, asphalt concrete briquettes consisting of 7% crumb rubber and three types of aggregate shapes, i.e., 100% rounded, a mix of 75% rounded and 25% elongated, and a mix of 75% rounded, 15% elongated and 10% flat, were associated with high Marshall stability and indirect tensile strength as well as low lateral deformation due to their high solidity and moderate angularity ratio. Also, the addition of 7% crumb rubber resulted in a significant improvement in the tensile strength ratio and rebound strain of briquettes consisting of 75% rounded and 25% elongated aggregates and those with 75% rounded, 15% elongated and 10% flat aggregates. In relation to the parameters investigated, the three groups of briquettes met some of the local (South Africa) requirements for the surface course and base course of low traffic volume roads.

Keywords

Acknowledgement

The materials and test equipment were provided by the Johannesburg Road Agency, Johannesburg. The authors are grateful.

References

  1. Arasan, S., Yenera, E., Hattatoglu, F., Hinislioglua, S. and Akbulut, S. (2011), "Correlation between shape of aggregate and mechanical properties of asphalt concrete: Digital image processing approach", Road Mater. Pavement Design, 12(2), 239-262. https://doi.org/10.3166/rmpd.12.239-262.
  2. Bilema, M., Aman, M., Hassan, N., Haloul, M. and Modibbo, S. (2021), "Influence of crumb rubber size particles on moisture damage and strength of the hot mix asphalt", Mater. Today: Proceedings, 42, 2387-2391. https://doi.org/10.1016/j.matpr.2020.12.423.
  3. Blab, R. (2013), "Performance-based asphalt mix and pavement design", Romanian J. Transport Infrastruct., 2(11), Performance-based asphalt mix and pavement design. https://doi.org/10.1515/rjti-2015-0009.
  4. Brown, E.R., Kandhal, P.S. and Zhang, J. (2001), "Performance testing for hot mix asphalt. Auburn Univ., Alabama: National Center for Asphalt Technology. NCAT report", 01-05A, https://www.eng.auburn.edu/research/centers/ncat/files/technical-reports/rep01-05.pdf.
  5. Chandh, K.A. and Akhila, S. (2016), "A laboratory study on effect of plastic on bitumen", Int. J. Sci. Res., 5(10), 1406-1409. https://doi.org/10.21275/21101603.
  6. Denneman, E. (2007), "The application of locally developed pavement temperature prediction algorithms in performance grade (PG) binder selection", Proceedings of the 26th Southern African Transport Conference, Pretoria, July 2007. http://hdl.handle.net/10204/1032.
  7. Geckil, T., Ahmedzade, P. and Alatas, T. (2018), "Effect of carbon black on the high and low temperature properties of bitumen", Int. J. Civ. Eng., 16, 207-218. https://doi.org/10.1007/s40999-016-0120-4.
  8. Gu, R., Fang, Y., Jiang, Q., Li, B. and Feng, D. (2022), "Effect of particle size on direct shear deformation of soil", Geomech. Eng., 28(2), 135-143. https://doi.org/10.12989/gae.2022.28.2.135.
  9. Janoo, V. (1998), "Quantification of shape, angularity, and surface texture of base course materials", Special Report 98-1,US Army Corps of Engineers, Cold Regions Research & Engineering Laboratory, https://usace.contentdm.oclc.org/digital/collection/p266001coll1/id/6225/
  10. Jiao, Y., Zhang, Y., Fu, L., Guo, M. and Zhang, L. (2019), "Influence of crumb rubber and tafpack super on performances of SBS modified porous asphalt mixtures", Road Mater. Pavement Design, 20, 196-216. https://doi.org/10.1080/14680629.2019.1590223.
  11. Karimi, B. (2023), "Effect of particle shape on the behavior of polymer-improved sandy soil used in pavements due to freeze-thaw cycles", Balt. J. Road Bridge Eng., 18(2), 128-151. https://doi.org/10.7250/bjrbe.2023-18.601.
  12. Kim. J., Roque, R. and Birgisson, B. (2005) "Obtaining creep compliance parameters accurately from static or cyclic creep tests", J. ASTM Int., 179-199. https://doi.org/10.1520/STP37631S
  13. Kumar, P. and Garg, R. (2011), "Rheology of waste plastic fibre-modified bitumen", Int. J. Pavement Eng., 12(5), 449-459. https://doi.org/10.1080/10298430903255296.
  14. Kumbargeri, Y., Boz, I., Kutay, M.E. and Heidelberg, A. (2020), "A study on the effects of aggregate shape and percent embedment on chip seal performance via image-based finite element analysis", Int. J. Pavement Eng., 21(8), 1002-1011. https://doi.org/10.1080/10298436.2019.1654104 .
  15. Li, L., Gao, Y. and Zhang, Y. (2021), "Fatigue cracking characterisations of waste-derived bitumen based on crack length", Int. J. Fatigue, 142, 128269. https://doi.org/10.1016/j.ijfatigue.2020.105974.
  16. Little, D.N., Allen, D.H. and Bhasin, A. (2018), "Chemical and mechanical processes influencing adhesion and moisture damage in hot mix asphalt pavements", Model. Design Flexible Pavements Mater., 123-186. https://doi.org/10.1007/978-3-319-58443-0_4.
  17. Lucas Junior, J.L., Babadopulos, L.F. and Soares, J.B. (2020), "Effect of aggregate shape properties and binder's adhesiveness to aggregate on results of compression and tension/compression tests on hot mix asphalt", Mater. Struct., 53(2), 1-15. https://doi.org/10.1617/s11527-020-01472-1.
  18. Ma, T., Wang, H., Zhao, Y., Huang, X. and Wang, S. (2017), "Laboratory investigation of crumb rubber modified asphalt binder and mixtures with warm-mix additives. International", J. Civil Eng., 15, 185-194. https://doi.org/10.1007/s40999-016-0040-3
  19. Masad, E. (2004), "X-ray computed tomography of aggregates and asphalt mixes", Mater. Eval, 62(7), 775-783.
  20. Mato, G., Uljarevic, Snjezana Z., Milovanovic, Radovan B., Vukomanovic and Dragana D. Zeljic. (2023), "Geotechnical problems in flexible pavement structures design", Geomech. Eng., 32(1), 35-47. https://doi.org/10.12989/gae.2023.32.1.035.
  21. Piotrowska, E., Malecot, Y. and Ke, Y. (2014), "Experimental investigation of the effect of coarse aggregate shape and composition on concrete triaxial behavior", Mech. Mater., 79, 45-57. https://doi.org/10.1016/j.mechmat.2014.08.002.
  22. Prowell, B.D. (2007), "Warm-mix asphalt. the international technology scanning program summary report", Federal Highway Authority, USA, July 2007.
  23. Qadir, A. (2014), "Rutting performance of polypropylene modified asphalt concrete", Int. J. Civil. Eng., 12(3), 304-312. http://ijce.iust.ac.ir/article-1-826-en.html
  24. Roberts, F.L., Kandhal, P.S., Brown, E.R., Lee, D. and Kennedy, T. (1996), "Hot mix asphalt materials, mixtures, design, and construction. NAPA education foundation", Lanham, Maryland, Second Edition, 241-250. https://trid.trb.org/view/473852.
  25. SABITA. (2019), "Origin and use of bitumen", 0-1. https://www.sabita.co.za/documents/sabbrochurebitumenpm.pdf.
  26. Sharma, U. and Singh, S.K. (2018), "Use of crumb rubber in flexible pavements and Comparison in Strength & Quality", Int. J. Innov. Res. Sci. Eng. Technol., 7(5), 4545-4550. DOI:10.15680/IJIRSET.2018.0704009.
  27. Soleimani, S.M., Faheiman, A. and Mowaze, Z. (2020), "The effects of using crumb rubber modified binder in an asphalt pavement", Am. J. Eng. Appl. Sci., 13(2), 237-253. https://doi.org/10.3844/ajeassp.2020.237.253.
  28. Wulandari, P.S. and Tjandra, D. (2017), "Use of crumb rubber as an additive in asphalt concrete mixture", Procedia Eng., 171, 1384-1389. https://doi.org/10.1016/j.proeng.2017.01.451.
  29. Xiao, F.P. and Amirkhanian, S.N. (2009), "Laboratory investigation of moisture damage in rubberised asphalt mixtures containing reclaimed asphalt pavement", Int. J. Pavement Eng., 10, 319-328. https://doi.org/10.1080/10298430802169432.
  30. Xu, W., Wei, X., Wei, J. and Chen, Z. (2020), "Experimental evaluation of the influence of aggregate strength on the flexural cracking behavior of epoxy asphalt mixtures", Materials, 13(8), 1876. https://doi.org/10.3390/ma13081876.
  31. Zaumanis, M., Arraigada, M., Wyss, S.A., Zeyer, K., Cavalli, M.D. and Poulikakos, L.D. (2019), "Performance-based design of 100% recycled hot-mix asphalt and validation using traffic load simulator", J. Clean. Prod, 237(10), 11767.
  32. Zingg, T. (1935), "Beitrag zur schotteranalyse. Dissertation", ETH Zurich.