DOI QR코드

DOI QR Code

Age-induced Changes in Ginsenoside Accumulation and Primary Metabolic Characteristics of Panax Ginseng in Transplantation Mode

  • Wei Yuan (Liaoning University of Traditional Chinese Medicine) ;
  • Qing-feng Wang (Liaoning University of Traditional Chinese Medicine) ;
  • Wen-han Pei (Macau University of Science and Technology) ;
  • Si-yu Li (Liaoning University of Traditional Chinese Medicine) ;
  • Tian-min Wang (Liaoning University of Traditional Chinese Medicine) ;
  • Hui-peng Song (Liaoning University of Traditional Chinese Medicine) ;
  • Dan Teng (He University) ;
  • Ting-guo Kang (Liaoning University of Traditional Chinese Medicine) ;
  • Hui Zhang (Liaoning University of Traditional Chinese Medicine)
  • Received : 2023.02.04
  • Accepted : 2023.09.25
  • Published : 2024.01.01

Abstract

Background: Ginseng (Panax ginseng Mayer) is an important natural medicine. However, a long culture period and challenging quality control requirements limit its further use. Although artificial cultivation can yield a sustainable medicinal supply, research on the association between the transplantation and chaining of metabolic networks, especially the regulation of ginsenoside biosynthetic pathways, is limited. Methods: Herein, we performed Liquid chromatography tandem mass spectrometry based metabolomic measurements to evaluate ginsenoside accumulation and categorise differentially abundant metabolites (DAMs). Transcriptome measurements using an Illumina Platform were then conducted to probe the landscape of genetic alterations in ginseng at various ages in transplantation mode. Using pathway data and crosstalk DAMs obtained by MapMan, we constructed a metabolic profile of transplantation Ginseng. Results: Accumulation of active ingredients was not obvious during the first 4 years (in the field), but following transplantation, the ginsenoside content increased significantly from 6-8 years (in the wild). Glycerolipid metabolism and Glycerophospholipid metabolism were the most significant metabolic pathways, as Lipids and lipid-like molecule affected the yield of ginsenosides. Starch and sucrose were the most active metabolic pathways during transplantation Ginseng growth. Conclusion: This study expands our understanding of metabolic network features and the accumulation of specific compounds during different growth stages of this perennial herbaceous plant when growing in transplantation mode. The findings provide a basis for selecting the optimal transplanting time.

Keywords

Acknowledgement

This work was supported by the National Nature Science Foundation of China (82173935). This work was also supported by the Inner Mongolia Major Science and Technology Project (2021SZD0030).

References

  1. Zhang H, Abid S, Ahn JC, Mathiyalagan R, Kim YJ, Yang DC, Wang Y. Characteristics of Panax ginseng cultivars in Korea and China. Molecules 2020 Jun 5;25(11):2635. 
  2. Gong L, Yin J, Zhang Y, Huang R, Lou Y, Jiang H, Sun L, Jia J, Zeng X. Neuroprotective mechanisms of ginsenoside Rb1 in central nervous system diseases. Front Pharmacol 2022 Jun 2;13:914352. 
  3. Yu X, Zhang N, Lin W, Wang C, Gu W, Ling C, Feng Y, Su Y. Regulatory effects of four ginsenoside monomers in humoral immunity of systemic lupus erythematosus. Exp Ther Med 2018 Feb;15(2):2097-103.  https://doi.org/10.3892/etm.2017.5657
  4. Kim JH. Cardiovascular diseases and Panax ginseng: a review on molecular mechanisms and medical applications. J Ginseng Res 2012 Jan;36(1):16-26.  https://doi.org/10.5142/jgr.2012.36.1.16
  5. Li C, Yan Z, Zhang L, Li Y. Research and implementation of good agricultural practice for traditional Chinese medicinal materials in Jilin Province, China. J Ginseng Res 2014 Oct 15;38(4):227-32.  https://doi.org/10.1016/j.jgr.2014.05.007
  6. Xu XF, Cheng XL, Lin QH, Li SS, Jia Z, Han T, Lin RC, Wang D, Wei F, Li XR. Identification of mountain-cultivated ginseng and cultivated ginseng using UPLC/oa-TOF MSE with a multivariate statistical sample-profiling strategy. J Ginseng Res 2016 Oct;40(4):344-50.  https://doi.org/10.1016/j.jgr.2015.11.001
  7. Khan Chowdhury MDE, Jeon J, Ok Rim S, Park YH, Kyu Lee S, Bae H. Composition, diversity and bioactivity of culturable bacterial endophytes in mountain-cultivated ginseng in Korea. Sci Rep 2017 Aug 30;7(1):10098. 
  8. Kil YJ, Eo JK, Lee EH, Eom AH. Root age-dependent changes in arbuscular mycorrhizal fungal communities colonizing roots of panax ginseng. Mycobiology 2014 Dec;42(4):416-21.  https://doi.org/10.5941/MYCO.2014.42.4.416
  9. Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 2020 Aug 3;13(8):1194-202. 
  10. Usadel B, Nagel A, Thimm O, Redestig H, Blaesing OE, Palacios-Rojas N, Selbig J, Hannemann J, Piques MC, Steinhauser D, et al. Extension of the visualization tool MapMan to allow statistical analysis of arrays, display of corresponding genes, and comparison with known responses. Plant Physiol 2005 Jul;138(3):1195-204.  https://doi.org/10.1104/pp.105.060459
  11. Zhang QH, Wu CF, Duan L, Yang JY. Protective effects of total saponins from stem and leaf of Panax ginseng against cyclophosphamide-induced genotoxicity and apoptosis in mouse bone marrow cells and peripheral lymphocyte cells. Food Chem Toxicol 2008 Jan;46(1):293-302.  https://doi.org/10.1016/j.fct.2007.08.025
  12. Razgonova M, Zakharenko A, Shin TS, Chung G, Golokhvast K. Supercritical CO2 extraction and identification of ginsenosides in Russian and north Korean ginseng by HPLC with tandem mass spectrometry. Molecules 2020 Mar 19;25(6):1407.
  13. Yin X, Hu H, Shen X, Li X, Pei J, Xu J. Ginseng omics for ginsenoside biosynthesis. Curr Pharm Biotechnol 2021;22(5):570-8.  https://doi.org/10.2174/1389201021666200807113723
  14. Xu J, Chu Y, Liao B, Xiao S, Yin Q, Bai R, Su H, Dong L, Li X, Qian J, et al. Panax ginseng genome examination for ginsenoside biosynthesis. Gigascience 2017 Nov 1;6(11):1-15.  https://doi.org/10.1093/gigascience/gix093
  15. Ye J, Li W, Ai G, Li C, Liu G, Chen W, Wang B, Wang W, Lu Y, Zhang J, et al. Genome-wide association analysis identifies a natural variation in basic helix-loop-helix transcription factor regulating ascorbate biosynthesis via D-mannose/L-galactose pathway in tomato. PLoS Genet 2019 May 8;15(5):e1008149. 
  16. Kim YJ, Lee OR, Oh JY, Jang MG, Yang DC. Functional analysis of 3-hydroxy-3-methylglutaryl coenzyme a reductase encoding genes in triterpene saponin-producing ginseng. Plant Physiol 2014;165(1):373-87.  https://doi.org/10.1104/pp.113.222596
  17. Pan Y, Li L, Xiao S, Chen Z, Sarsaiya S, Zhang S, ShangGuan Y, Liu H, Xu D. Callus growth kinetics and accumulation of secondary metabolites of Bletilla striata Rchb. f. using a callus suspension culture. PLoS One 2020 Feb 19;15(2):e0220084. 
  18. Sergeeva A, Mettler-Altmann T, Liu H, Mai HJ, Bauer P. Glycerolipid profile differences between perennial and annual stem zones in the perennial model plant Arabis alpina. Plant Direct 2021 Jan 19;5(1):e00302. 
  19. Zhao X, Wei J, He L, Zhang Y, Zhao Y, Xu X, Wei Y, Ge S, Ding D, Liu M, et al. Identification of fatty acid desaturases in maize and their differential responses to low and high temperature. Genes (Basel) 2019 Jun 12;10(6):445. 
  20. Zienkiewicz A, Zienkiewicz K, Rejon ' JD, Rodriguez-Garcia MI, Castro AJ. New insights into the early steps of oil body mobilization during pollen germination. J Exp Bot 2013 Jan;64(1):293-302.  https://doi.org/10.1093/jxb/ers332
  21. Hou Q, Ufer G, Bartels D. Lipid signalling in plant responses to abiotic stress. Plant Cell Environ 2016 May;39(5):1029-48.  https://doi.org/10.1111/pce.12666
  22. Yin X, Hu H, Shen X, Li X, Pei J, Xu J. Ginseng omics for ginsenoside biosynthesis. Curr Pharm Biotechnol 2021;22(5):570-8.  https://doi.org/10.2174/1389201021666200807113723
  23. Hernandez-Rocamora VM, Otten CF, Radkov A, Simorre JP, Breukink E, VanNieuwenhze M, Vollmer W. Coupling of polymerase and carrier lipid phosphatase prevents product inhibition in peptidoglycan synthesis. Cell Surf 2018 Jun;2:1-13.  https://doi.org/10.1016/j.tcsw.2018.04.002
  24. Lozano-Munoz I, Munoz S, Diaz NF, Medina A, Bazaes J, Riquelme C. Nutritional enhancement of farmed salmon meat via non-GMO nannochloropsis gaditana: eicosapentaenoic acid (EPA, 20:5 n-3), docosapentaenoic acid (DPA, 22:5 n-3) and vitamin D3 for human health. Molecules 2020 Oct 10;25(20):4615. 
  25. Wei G, Yang F, Wei F, Zhang L, Gao Y, Qian J, Chen Z, Jia Z, Wang Y, Su H, et al. Metabolomes and transcriptomes revealed the saponin distribution in root tissues of Panax quinquefolius and Panax notoginseng. J Ginseng Res 2020 Nov;44(6):757-69.  https://doi.org/10.1016/j.jgr.2019.05.009
  26. Wang K, Jiang S, Sun C, Lin Y, Yin R, Wang Y, Zhang M. The spatial and temporal transcriptomic landscapes of ginseng, panax ginseng C. A. Meyer. Sci Rep 2015;5:18283. 
  27. Zeng W, Peng Y, Zhao X, Wu B, Chen F, Ren B, Zhuang Z, Gao Q, Ding Y. Comparative proteomics analysis of the seedling root response of drought-sensitive and drought-tolerant maize varieties to drought stress. Int J Mol Sci 2019 Jun 7;20(11):2793. 
  28. Zhang T, Han M, Yang L, Han Z, Cheng L, Sun Z, Yang L. The effects of environmental factors on ginsenoside biosynthetic enzyme gene expression and saponin abundance. Molecules 2018 Dec 20;24(1):14. 
  29. Pararasa C, Ikwuobe J, Shigdar S, Boukouvalas A, Nabney IT, Brown JE, Devitt A, Bailey CJ, Bennett SJ, Griffiths HR. Age-associated changes in long-chain fatty acid profile during healthy aging promote pro-inflammatory monocyte polarization via PPARγ. Aging Cell 2016 Feb;15(1):128-39.  https://doi.org/10.1111/acel.12416
  30. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 2009:D233-8. Jan;37(Database issue).  https://doi.org/10.1093/nar/gkn663
  31. Wu R, Lin X, He J, Min A, Pang L, Wang Y, Lin Y, Zhang Y, He W, Li M, et al. Hexokinase1: a glucose sensor involved in drought stress response and sugar metabolism depending on its kinase activity in strawberry. Front Plant Sci 2023;14:1069830. 
  32. Yin J, Zhang D, Zhuang J, Huang Y, Mu Y, Lv S. Study on the correlation between gene expression and enzyme activity of seven key enzymes and ginsenoside content in ginseng in over time in ji'an, China. Int J Mol Sci 2017;18(12). 
  33. Han JY, Kim MJ, Ban YW, Hwang HS, Choi YE. The involvement of β-amyrin 28-oxidase (CYP716A52v2) in oleanane-type ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol 2013;54(12):2034-46.  https://doi.org/10.1093/pcp/pct141
  34. Yoon YE, Cho HM, Bae DW, Lee SJ, Choe H, Kim MC, Cheong MS, Lee YB. Erythromycin treatment of Brassica campestris seedlings impacts the photosynthetic and protein synthesis pathways. Life (Basel) 2020;10(12):311. Nov 26. 
  35. Wang M, Zhang S, Ding F. Melatonin mitigates chilling-induced oxidative stress and photosynthesis inhibition in tomato plants. Antioxidants (Basel) 2020 Mar 6;9(3):218. 
  36. Moreau S, van Aubel G, Janky R, Van Cutsem P. Chloroplast electron chain, ROS production, and redox homeostasis are modulated by COS-OGA elicitation in tomato (Solanum lycopersicum) leaves. Front Plant Sci 2020 Dec 14;11:597589. 
  37. Zhang C, Huang Y, Xiao Z, Yang H, Hao Q, Yuan S, Chen H, Chen L, Chen S, Zhou X, et al. A GATA transcription factor from soybean (Glycine max) regulates chlorophyll biosynthesis and suppresses growth in the transgenic Arabidopsis thaliana. Plants (Basel) 2020 Aug 15;9(8):1036. 
  38. Wu W, Jiao C, Li H, Ma Y, Jiao L, Liu S. LC-MS based metabolic and metabonomic studies of Panax ginseng. Phytochem Anal 2018 Jul;29(4):331-40.  https://doi.org/10.1002/pca.2752
  39. Li M, Hua S, Huang X, Yue H, Chen C, Liu S. Non-targeted metabonomics to investigate the differences in the properties of ginseng and American ginseng based on rapid resolution liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry. J Sep Sci 2021 Sep;44(18):3497-505.  https://doi.org/10.1002/jssc.202100376
  40. Lee HJ, Jeong J, Alves AC, Han ST, In G, Kim EH, Jeong WS, Hong YS. Metabolomic understanding of intrinsic physiology in Panax ginseng during whole growing seasons. J Ginseng Res 2019 Oct;43(4):654-65.  https://doi.org/10.1016/j.jgr.2019.04.004
  41. Arkhimandritova S, Shavarda A, Potokina E. Key metabolites associated with the onset of flowering of guar genotypes (Cyamopsis tetragonoloba (L.) Taub). BMC Plant Biol 2020 Oct 14;20(Suppl 1):291.