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GEOMETRY OF THE MODULI SPACE OF HIGGS PAIRS

ON AN IRREDUCIBLE NODAL CURVE OF

ARITHMETIC GENUS ONE

Sang-Bum Yoo

Abstract. We describe the moduli space of Higgs pairs on an irreducible
nodal curve of arithmetic genus one and its geometric structures in terms

of the Hitchin map and a flat degeneration of the moduli space of Higgs

bundles on an elliptic curve.

1. Introduction

1.1. Motivations and results

The moduli space of Higgs bundles on a smooth curve has been intensively
studied in view of mirror symmetry that was first raised over an elliptic curve by
M. Thaddeus in [18] and over any smooth curve by T. Hausel and M. Thaddeus
in [11]. Our work in this paper provides concrete ingredients to be useful later
when we prove or disprove a mirror symmetry phenomenon over a singular
curve.

The purpose of this paper is to describe the moduli space of Higgs pairs on
an irreducible nodal curve of arithmetic genus one and its geometric structures
in terms of the Hitchin map and a flat degeneration of the moduli space of
Higgs bundles on an elliptic curve explicitly.

Throughout this paper, Y denotes a reduced irreducible projective curve
of arithmetic genus one, with only one ordinary node p, defined over C, let
ν : X → Y be the normalization map and let ν−1(p) = {p1, p2}. Note that
X ∼= P1.

There are two ways to study Higgs pairs on Y like torsion-free sheaves on Y
(see [9,15]). One is to compare them with generalized parabolic Higgs bundles
on X in order to give the Hitchin map on the moduli space of Higgs pairs on
Y (see [6]). Another is to compare them with Gieseker-Hitchin pairs on X
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attached with a chain of projective lines in order to give a flat degeneration of
the moduli space of Higgs bundles on an elliptic curve (see [3]).

For a positive integer n and an arbitrary integer d, we consider the following
moduli spaces.

• Let UY (n, d) be the moduli space of semistable torsion-free sheaves of
rank n and degree d on Y .

• Let UGPB
X (n, d) be the moduli space of semistable generalized parabolic

vector bundles of rank n and degree d on X.
• Let MY (n, d) be the moduli space of semistable Higgs pairs of rank n
and degree d on Y .

• Let MGGPH
X (n, d) be the moduli space of semistable good generalized

parabolic Higgs bundles of rank n and degree d on X.

We describe MY (n, d) and MGGPH
Y (n, d) as follows.

Theorem 1.1 (Theorem 3.2). If gcd(n, d) = 1, then MY (n, d) ∼= UY (n, d) ×
C ∼= Y × C.

Theorem 1.2 (Theorem 3.3). If gcd(n, d) > 1, then there is no stable Higgs
pairs of rank n and degree d on Y .

Theorem 1.3 (Theorem 3.11). Let gcd(n, d) = h.

(1) There exists a bijective morphism

Symh(Y × C) → MY (n, d).

(2) MY (n, d) is irreducible.

Theorem 1.1 follows from a simplified stability of Higgs pairs on Y and a de-
scription of UY (n, d) by [7] in the case gcd(n, d) = 1. The proof of Theorem 1.2
is given by considering a degeneration of the moduli space of semistable Higgs
bundles of rank n and degree d on an elliptic curve and using the nonexistence
of stable Higgs bundles of rank n and degree d on an elliptic curve in the case
gcd(n, d) > 1. Theorem 1.3 follows from a family of semistable Higgs pairs of

rank n and degree d on Y parametrized by (Y × C) × h· · · × (Y × C) induced
from the universal family of stable Higgs pairs of rank n

h and degree d
h on Y

parametrized by Y × C in the case gcd(n, d) = h.

Theorem 1.4 (Theorem 3.7). (1) If gcd(n, d) = 1, then MGGPH
X (n, d) ∼=

UGPB
X (n, d)× C ∼= P1 × C.

(2) If gcd(n, d) > 1, then the stable locus MGGPH
X (n, d)s of MGGPH

X (n, d)
is empty.

Theorem 1.5 (Theorem 3.14). Let gcd(n, d) = h.

(1) There exists a bijective morphism

Symh(P1 × C) → MGGPH
X (n, d).

(2) Symh(P1 × C) is the normalization of MGGPH
X (n, d).
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(3) MGGPH
X (n, d) is irreducible.

Theorem 1.4(1) follows from a simplified stability of generalized parabolic
Higgs bundles on X and the known result that UGPB

X (n, d) is the normalization
of UY (n, d) in the case gcd(n, d) = 1. Theorem 1.4(2) follows from the nonexis-
tence of stable Higgs bundles of rank n and degree d on an elliptic curve in the
case gcd(n, d) > 1. Theorem 1.5 follows from the normality of Symh(P1 × C)
and a family of semistable generalized parabolic Higgs bundles of rank n and

degree d on X parametrized by (P1 × C) × h· · · × (P1 × C) induced from the
universal family of stable generalized parabolic Higgs bundles of rank n

h and

degree d
h on X parametrized by P1 × C in the case gcd(n, d) = h.

We also describe all fibers of the Hitchin maps H on MY (n, d) and HGGPH

on MGGPH
X (n, d) as follows.

Theorem 1.6 (Corollary 4.7). Let gcd(n, d) = h. The generic fiber of the
Hitchin map HGGPH on MGGPH

X (n, d) is set-theoretically isomorphic to P1 ×
h· · · × P1. The fiber over an arbitrary point of the base is set-theoretically iso-

morphic to Pm1 × h· · · × Pml , where h = m1 + · · · + ml. The fiber over an
arbitrary point of the base is isomorphic to P1 for the case gcd(n, d) = 1.

Theorem 1.7 (Corollary 4.8). Let gcd(n, d) = h. The generic fiber of the

Hitchin map H on MY (n, d) is set-theoretically isomorphic to Y × h· · · × Y .
The fiber over an arbitrary point of the base is set-theoretically isomorphic to

Symm1Y × l· · ·×SymmlY , where h = m1+ · · ·+ml. The fiber over an arbitrary
point of the base is isomorphic to Y for the case gcd(n, d) = 1.

We define the Hitchin map HGGPH on MGGPH
X (n, d) and then it induces

the Hitchin map H on MY (n, d) by a surjective birational morphism f :
MGGPH

X (n, d) → MY (n, d). HGGPH is set-theoretically identified with the
projection

πh : Symh(P1 × C) → SymhC,

[(x1, t1), . . . , (xh, th)]Sh
7→ [t1, . . . , th]Sh

.

Then the identification of fibers of HGGPH and πh gives Theorem 1.6. The-
orem 1.7 follows from Theorem 1.6 and the surjective birational morphism
f : MGGPH

X (n, d) → MY (n, d).
We finally describe a flat degeneration of the moduli space of stable Higgs

bundles of rank n and degree d on an elliptic curve for the case gcd(n, d) =
1. Let Z → T be a flat family of irreducible complex projective curves of
arithmetic genus one parametrized by a smooth curve T such that for all t ̸= t0,
the fiber Zt is an elliptic curve and Zt0

∼= Y . Let GZ/T (n, d) → T be a flat
family of the moduli spaces of stable Gieseker-Hitchin pairs of rank n and
degree d over Z parametrized by T , which is constructed in [3, Proposition
5.13]. Let HGH be the Hitchin map on GZ/T (n, d).
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Theorem 1.8 (Theorem 5.8). (1) GZ/T (n, d) ∼= Z × C as T -schemes.

(2) νGH
∗ : GZ/T (n, d) → MZ/T (n, d) is identified with the identity map
idZ×C : Z ×C → Z ×C, where MZ/T (n, d) → T is the relative moduli
space of stable Higgs pairs of rank n and degree d on Z.

(3) The fiber of the Hitchin map HGH on GZ/T (n, d) is isomorphic to Z.

1.2. Organization of the paper

In Section 2, we describe UY (n, d) and UGPB
X (n, d) explicitly. In Section

3, we describe MY (n, d) and MGGPH
X (n, d) explicitly. In Section 4, we give

descriptions of all fibers of the Hitchin maps on MGGPH
X (n, d) and MY (n, d),

respectively. In Section 5, we prove that GZ/T (n, d) ∼= Z×C as T -schemes and
the fiber of the Hitchin map on GZ/T (n, d) is isomorphic to Z.

Acknowledgements. The author thanks Young-Hoon Kiem for his comments
and suggestions on an earlier draft. This work was supported by the National
Research Foundation of Korea grant funded by the Korea government(MSIT)
(No. 2021R1F1A1062436).

2. Torsion-free sheaves and generalized parabolic vector bundles

In this section we aim to describe the moduli space of torsion-free sheaves on
Y and that of generalized parabolic vector bundles on X explicitly by relating
these moduli spaces.

Definition ([5]). A generalized parabolic vector bundle (GPB) of rank n and
degree d on X is a pair (E,F1(E)), where E is a vector bundle of rank n and
degree d on X and F1(E) is an n-dimensional subspace of Ep1

⊕ Ep2
.

Definition ([5]). A GPB (E,F1(E)) is semistable (respectively, stable) if for
every proper subbundle N ⊂ E,

degN + dim(F1(E) ∩ (Np1
⊕Np2

))

rankN
≤ (<)

degE + dimF1(E)

rankE
.

Consider a GPB (E,F1(E)) of rank n and degree d on X. To (E,F1(E)), we
associate a torsion-free sheaf F of rank n and degree d on Y by the following
short exact sequence:

0 → F → ν∗E → ν∗(E)⊗ C(p)/F1(E) → 0.

Proposition 2.1 (Proposition 4.2 of [5]). (E,F1(E)) is semistable (respectively,
stable) of rank n and degree d if and only if F is semistable (respectively, stable)
of rank n and degree d.

Let UY (n, d) be the moduli space of semistable torsion-free sheaves of rank
n and degree d on Y and let UGPB

X (n, d) be the moduli space of generalized
parabolic vector bundles of rank n and degree d on X. Denote the stable loci
of UY (n, d) and UGPB

X (n, d) by UY (n, d)
s and UGPB

X (n, d)s, respectively.
We begin with referring to the results of a classification of stable torsion-free

sheaves on Y in [7].
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Proposition 2.2 (Lemma 2.2 and Theorem 2.5 of [7]). (1) If gcd(n, d) =
1, then UY (n, d) ∼= Y .

(2) If gcd(n, d) > 1, then there is no stable torsion-free sheaf of rank n and
degree d over Y , that is, UY (n, d)

s is empty.

Let us denote Y
∼= // UY (n, d) of Proposition 2.2(1) by ζn,d.

Next we classify stable GPBs on X. Combining Proposition 2.1 with Propo-
sition 2.2(2), we have the following statement.

Lemma 2.3. If gcd(n, d) > 1, then there is no stable GPB of rank n and
degree d over X.

The following result relates UY (n, d) to UGPB
X (n, d).

Proposition 2.4 (Theorem 1 and Theorem 3 of [5], Proposition 2.1 of [17]).
UGPB
X (n, d) is the normalization of UY (n, d).

The following classification is immediately obtained from Proposition 2.2(1),
Lemma 2.3 and Proposition 2.4.

Proposition 2.5. (1) If gcd(n, d) = 1, then UGPB
X (n, d) ∼= P1.

(2) If gcd(n, d) > 1, then UGPB
X (n, d)s is empty.

Denote P1
∼= // UGPB

X (n, d) of Proposition 2.5(1) by ζGPB
n,d .

Now we classify semistable torsion-free sheaves on Y and semistable GPBs
on X. By Proposition 2.2(2) and Lemma 2.3, the Jordan-Hölder filtrations for
torsion-free sheaves and GPBs imply the following observations.

Lemma 2.6. Assume gcd(n, d) = h.

(1) Any semistable torsion-free sheaf F of rank n and degree d over Y is
S-equivalent to F1 ⊕ · · · ⊕ Fh, where each Fi is stable of rank n

h and

degree d
h .

(2) Any semistable GPB (E,F1(E)) of rank n and degree d over X is S-
equivalent to (E1, F1(E1))⊕· · ·⊕(Eh, F1(Eh)), where each (Ei, F1(Ei))
is stable of rank n

h and degree d
h .

When gcd(n, d) = 1, there exist universal families of stable torsion-free
sheaves and stable GPBs of rank n and degree d.

Lemma 2.7. Assume that gcd(n, d) = 1. Then there exists a universal family
Vn,d of stable torsion-free sheaves of rank n and degree d parametrized by Y
such that for every y ∈ Y ,

ζn,d(y) = [(Vn,d)y]S ,

where [(Vn,d)y]S is the S-equivalence class of (Vn,d)y.

Proof. Since χ(E(m)) = nm + d for any E ∈ UY (n, d) and gcd(n, d) = 1, by
[12, Corollary 4.6.6] and Proposition 2.2(1), we prove the statement. □
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Lemma 2.8. Assume that gcd(n, d) = 1. Then there exists a universal family
(Wn,d, F1(Wn,d)) of stable GPBs of rank n and degree d parametrized by X
such that for every x ∈ X,

ζGPB
n,d (x) = [(Wn,d, F1(Wn,d))x]S ,

where [(Wn,d, F1(Wn,d))x]S is the S-equivalence class of (Wn,d, F1(Wn,d))x.

Proof. By Proposition 3.16 of [5] and Proposition 2.5(1), we prove the state-
ment. □

If gcd(n, d) = h > 1, n′ = n
h and d′ = d

h , then we can consider the families

Vn,d = Vn′,d′ ×
Y

h· · · ×
Y
Vn′,d′

of polystable torsion-free sheaves parametrized by Y × h· · · × Y and

(Wn,d, F1(Wn,d)) = (Wn′,d′ , F1(Wn′,d′))×
X

h· · · ×
X
(Wn′,d′ , F1(Wn′,d′))

of polystable GPBs parametrized by P1 × h· · · × P1.
The following maps induced by Vn,d and (Wn,d, F1(Wn,d)),

νVn,d
: Y × h· · · × Y → UY (n, d)

and

ν(Wn,d,F1(Wn,d)) : P
1 × h· · · × P1 → UGPB

X (n, d)

are surjective by Lemma 2.6 and factor through SymhY and SymhP1. Now we
complete the classification as follows.

Proposition 2.9. (1) For gcd(n, d) = h, there exists a bijective morphism

SymhY → UY (n, d).

(2) For gcd(n, d) = h, UGPB
X (n, d) ∼= SymhP1 ∼= Ph.

Proof. (1) νVn,d
: Y × h· · · × Y → UY (n, d) induces a bijective morphism

SymhY → UY (n, d).

(2) ν(Wn,d,F1(Wn,d)) : P1× h· · ·×P1 → UGPB
X (n, d) induces a bijective morphism

ζGPB
n,d : SymhP1 → UGPB

X (n, d).

Since SymhP1 ∼= Ph is connected and UGPB
X (n, d) is normal, ζGPB

n,d is an isomor-
phism by Zariski’s main theorem. □
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3. Higgs pairs and generalized parabolic Higgs bundles

In this section we describe the moduli space of Higgs pairs on Y and that of
generalized parabolic Higgs bundles on X explicitly. Note that the dualizing
sheaf ωY is trivial.

Definition ([6]). A Higgs pair of rank n and degree d on Y is a pair (E, ϕE),
where E is a torsion-free sheaf of rank n and degree d on Y and ϕE is a global
section of EndE.

Definition ([6]). A Higgs pair (E, ϕE) is semistable (respectively, stable) if for
every proper ϕE-invariant subsheaf N ⊂ E,

µ(N) ≤ (<)µ(E),

where µ(E) = degE
rankE is the slope of E.

Definition ([6]). A generalized parabolic Higgs bundle (GPH) of rank n and
degree d on X is a triple (E, ϕE , F1(E)), where E is a vector bundle of rank n
and degree d onX, ϕE is a global section of EndE and F1(E) is an n-dimensional
subspace of Ep1

⊕ Ep2
. A GPH (E, ϕE , F1(E)) is good if ϕE |p1+p2

(F1(E)) ⊂
F1(E).

Definition ([6]). A GPH (E, ϕE , F1(E)) is semistable (respectively, stable) if
for every proper ϕE-invariant subbundle N ⊂ E,

degN + dim(F1(E) ∩ (Np1
⊕Np2

))

rankN
≤ (<)

degE + dimF1(E)

rankE
.

Let MY (n, d) be the moduli space of semistable Higgs pairs of rank n and
degree d on Y and MY (n, d)

s denotes the stable locus. Let MGPH
X (n, d) be the

moduli space of semistable GPHs of rank n and degree d onX andMGPH
X (n, d)s

denotes the stable locus. Let MGGPH
X (n, d) be the moduli space of semistable

good GPHs of rank n and degree d on X and MGGPH
X (n, d)s denotes the

stable locus. Note that MGGPH
X (n, d) is a closed subscheme of MGPH

X (n, d) by
Theorem 4.8 of [6].

The triviality of ωY gives a simplicity of the study of the semistability of
Higgs pairs on Y .

Lemma 3.1. (1) A Higgs pair (E, ϕ) is semistable if and only if E is
semistable.

(2) If gcd(n, d) = 1 and (E, ϕ) ∈ MY (n, d), then (E, ϕ) is stable if and
only if E is stable.

Proof. Since the dualizing sheaf ωY is trivial, the proof is same as that of
Proposition 4.1 of [8]. □

We start with classifying stable Higgs pairs on Y .

Theorem 3.2. If gcd(n, d) = 1, then MY (n, d) ∼= UY (n, d)× C ∼= Y × C.
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Proof. Since MY (n, d) → MY (n, d+ndegM), (E, ϕE) 7→ (E⊗M,ϕE ⊗ idM )
is an isomorphism for some fixed line bundle M on Y , we may assume that
d > n as [14, page 281].

Let U be the restriction of the universal sheaf to Y × Rs, where R is the
open subset of the quot scheme parametrizing quotient sheaves of rank n and
degree d in [14, Section 3]. Applying [14, Lemma 3.5] with F = EndU , we get
a linear scheme F → Rs given by

F = SpecSymORs (πRs∗EndU)∨,

where πRs : Y × Rs → Rs is the projection onto Rs. Since πRs∗EndU ∼= ORs

by [12, Lemma 4.6.3], we have F ∼= Rs × C. It follows from Lemma 3.1 that
F s ∼= Rs × C.

Hence by the construction of [14, Section 3] and Proposition 2.2(1),

MY (n, d) ∼= F s//PGL(d)

∼= (Rs//PGL(d))× C
∼= UY (n, d)× C
∼= Y × C. □

Let us denote Y × C
∼= //MY (n, d) of Theorem 3.2 by ηn,d.

Theorem 3.3. If gcd(n, d) > 1, then there is no stable Higgs pairs of rank n
and degree d over Y . In other words MY (n, d)

s is empty.

Proof. Let Z → S be a flat family of irreducible complex projective curves of
arithmetic genus one parametrized by a smooth curve S, and let s0 ∈ S be a
base point such that for all s ̸= s0, the fiber Zs is an elliptic curve and Zs0

∼= Y .
Let M → S be the relative moduli variety over S such that Ms is the moduli
space of semistable Higgs bundles of rank n and degree d on Zs for all s ̸= s0
and Ms0 = MY (n, d) (see [16] for the existence of M).

Let Ms ⊂ M denote the subset corresponding to stable Higgs pairs. By the
openness of the stability condition, Ms is an open subset of M (see Proposition
3.1 of [14]). Assume that there is a stable Higgs pair on Y of rank n and degree
d in an irreducible component Mirr of M . Then Ms ∩Mirr ∩Ms0 is nonempty,
henceMs∩Mirr is nonempty. ThenMs∩(Mirr\Ms0) is a nonempty open subset
of Mirr. Consequently, Ms is nonempty for some s ̸= s0. This contradicts the
fact that there are no stable Higgs bundles of rank n and degree d on an elliptic
curve ([8, Proposition 4.3] and FACT of [19]). This completes the proof. □

Next we classify stable good GPHs on X. We first recall an equivalence of
semistabilities between good GPHs on X and Higgs pairs on Y . Consider a
good GPH (E, ϕE , F1(E)) of rank n and degree d on X. To (E, ϕE , F1(E)), we
associate a Higgs pair (E, ϕE) of rank n and degree d on Y by the following
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commutative diagram of short exact sequences:

(3.1) 0 // F //

ϕF

��

ν∗E //

ν∗ϕE

��

ν∗E ⊗ C(p)/F1(E) //

(ν∗ϕE)p

��

0

0 // F // ν∗E // ν∗E ⊗ C(p)/F1(E) // 0.

Proposition 3.4 (Theorem 2.9 of [6]). A good GPH (E, ϕE , F1(E)) is semi-
stable if and only if (F, ϕF ) is semistable.

Indeed we also have an equivalence of stabilities between good GPHs on X
and Higgs pairs on Y .

Proposition 3.5. A good GPH (E, ϕE , F1(E)) is stable if and only if (F, ϕF )
is stable.

Proof. Assume that (E, ϕE , F1(E)) is stable of rank n and degree d. Then

degF = deg ν∗E − dim(ν∗E ⊗ C(p)/F1(E)) = degE + n− (2n− n) = degE

and ϕE = ν∗ϕF . Let K1 be a ϕF -invariant subsheaf of F of rank r. Let K be
the subbundle of E generated by the image of ν∗K1/torsion in E. Then K is
a ϕE-invariant subbundle of E of rank r and K1 is obtained by

0 → K1 → ν∗K → ν∗K ⊗ C(p)/F1(K) → 0,

where F1(K) = F1(E) ∩ (Kp1
⊕Kp2

). Let s = dimF1(K). Then we have

degK1 = deg ν∗K−dim(ν∗K⊗C(p)/F1(K))=degK+r−(2r−s)=degK+s−r.

Hence degK+s
r < µ(E) + 1 if and only if degK1

r < µ(F ). □

Combining Proposition 2.1 and Lemma 3.1 with Proposition 3.4, the semista-
bility of good GPHs is simplified.

Proposition 3.6. A good GPH (E, ϕE , F1(E)) is semistable if and only if
(E,F1(E)) is semistable.

We complete the classification as follows.

Theorem 3.7. (1) If gcd(n, d) = 1, then MGGPH
X (n, d) ∼= UGPB

X (n, d) ×
C ∼= P1 × C.

(2) If gcd(n, d) > 1, then MGGPH
X (n, d)s is empty.

Proof. (1) Note that if (E,F1(E)) is stable, then any endomorphism of (E,
F1(E)) is a scalar (see Corollary 3.9 of [5]). The proof is similar to that of
Theorem 3.2. Proposition 3.6 and the construction of MGGPH

X (n, d) of [6] are
applied to the proof.

(2) The statement is an immediate consequence of Theorem 3.3 and Propo-
sition 3.5. □
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Denote P1 × C
∼= //MGGPH

X (n, d) of Theorem 3.7(1) by ηGGPH
n,d .

Now we classify semistable Higgs pairs on Y . By Theorem 3.3 and using
Jordan-Hölder filtration for Higgs pairs, we have the following observation.

Lemma 3.8. Assume gcd(n, d) = h. Then any semistable Higgs pair (F, ϕF )
of rank n and degree d over Y is S-equivalent to (F1, ϕF1) ⊕ · · · ⊕ (Fh, ϕFh

),
where each (Fi, ϕFi

) is stable of rank n
h and degree d

h .

When gcd(n, d) = 1, there exists a universal family of stable Higgs pairs.

Lemma 3.9. Let gcd(n, d) = 1. There exists a universal family En,d =
(Vn,d,Φn,d) of stable Higgs pairs of rank n and degree d parametrized by Y ×C.

Proof. Consider the family of stable Higgs pairs En,d = (Vn,d,Φn,d) over Y ×C
such that

En,d|Y×(y,t)
∼= ((Vn,d)y,

t

n
⊗ id(Vn,d)y ).

Then for any (y, t) ∈ Y × C, we have

ηn,d((y, t)) = [En,d|Y×(y,t)]S ,

where [En,d|Y×(y,t)]S is the S-equivalence class of En,d|Y×(y,t).
Any family F → Y × T induces canonically a morphism

νF : T → MY (n, d).

Then f = (ηn,d)
−1 ◦ νF is a morphism T → Y ×C such that F is S-equivalent

to f∗En,d. □

If gcd(n, d) = h > 1, n′ = n
h and d′ = d

h , then we can consider the family

En,d = En′,d′ ×
Y

h· · · ×
Y
En′,d′

of polystable Higgs pairs parametrized by (Y × C)× h· · · × (Y × C).

Remark 3.10. The action of the symmetric group Sh on Y × h· · · × Y induces

an action of Sh on (Y × C) × h· · · × (Y × C). If ω1 and ω2 are two points of

(Y ×C)× h· · · × (Y ×C), the Higgs pairs (En,d)ω1
and (En,d)ω2

are S-equivalent
if and only if ω2 = γ · ω1 for some γ ∈ Sh.

The following map induced by En,d,

νEn,d
: (Y × C)× h· · · × (Y × C) → MY (n, d),

is surjective by Lemma 3.8 and factors through Symh(Y ×C) by Remark 3.10.
Now we complete the classification of semistable Higgs pairs as follows.

Theorem 3.11. Let gcd(n, d) = h.

(1) There exists a bijective morphism

ηn,d : Symh(Y × C) → MY (n, d).
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(2) MY (n, d) is irreducible.

Proof. (1) νEn,d
induces a bijective morphism

ηn,d : Symh(Y × C) → MY (n, d).

(2) Since νEn,d
is continuous and (Y × C)× h· · · × (Y × C) is irreducible, we

get the result. □

Finally we classify semistable good GPHs on X. By Theorem 3.7(2) and
using Jordan-Hölder filtration of GPHs, we have the following observation.

Lemma 3.12. Assume gcd(n, d) = h. Then any semistable good GPH (E, ϕE,
F1(E)) of rank n and degree d over X is S-equivalent to (E1, ϕE1

, F1(E1)) ⊕
· · · ⊕ (Eh, ϕEh

, F1(Eh)), where each (Ei, ϕEi
, F1(Ei)) is stable of rank n

h and

degree d
h .

When gcd(n, d) = 1, there exists a universal family of stable good GPHs.

Lemma 3.13. Let gcd(n, d) = 1. There exists a universal family EGGPH
n,d =

(Wn,d,Φn,d, F1(Wn,d)) of stable good GPHs of rank n and degree d parametrized
by X × C.

Proof. Consider the family of stable good GPHs EGGPH
n,d =(Wn,d,Φn,d, F1(Wn,d))

over X × C such that

EGGPH
n,d |X×(x,t)

∼= ((Wn,d)x,
t

n
⊗ id(Wn,d)x , (F1(Wn,d))x).

Then for any (x, t) ∈ X × C, we have

ηGGPH
n,d ((x, t)) = [EGGPH

n,d |X×(x,t)]S ,

where [EGGPH
n,d |X×(x,t)]S is the S-equivalence class of EGGPH

n,d |X×(x,t).
Any family F → X × T induces canonically a morphism

νF : T → MGGPH
X (n, d).

Then f = (ηGGPH
n,d )−1◦νF is a morphism T → X×C such that F is S-equivalent

to f∗EGGPH
n,d . □

If gcd(n, d) = h > 1, n′ = n
h and d′ = d

h , then we can consider the family

EGGPH
n,d = EGGPH

n′,d′ ×
X

h· · · ×
X
EGGPH
n′,d′

of polystable good GPHs parametrized by (P1 × C)× h· · · × (P1 × C).
The following map induced by EGGPH

n,d ,

νEGGPH
n,d

: (P1 × C)× h· · · × (P1 × C) → MGGPH
X (n, d),

is surjective by Lemma 3.12 and factors through Symh(P1 × C). We complete
the classification of semistable good GPHs as follows.
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Theorem 3.14. Let gcd(n, d) = h.

(1) There exists a bijective morphism

ηGGPH
n,d : Symh(P1 × C) → MGGPH

X (n, d).

(2) Symh(P1 × C) is the normalization of MGGPH
X (n, d).

(3) MGGPH
X (n, d) is irreducible.

Proof. (1) νEGGPH
n,d

induces a bijective morphism

ηGGPH
n,d : Symh(P1 × C) → MGGPH

X (n, d).

(2) Since Symh(P1 × C) is normal, the result follows by Zariski’s main the-
orem.

(3) Since νGGPH
En,d

is continuous and (P1 × C)× h· · · × (P1 × C) is irreducible,
we get the result. □

4. Hitchin map

In this section, we give descriptions of all fibers of the Hitchin maps on
MGGPH

X (n, d) and MY (n, d), respectively.

Definition (Section 5 of [6]). The Hitchin map on MGGPH
X (n, d) is defined by

HGGPH : MGGPH
X (n, d) → A :=

n⊕
i=1

H0(X,OX),

(E, ϕE , F1(E)) 7→ (a1(ϕE), . . . , an(ϕE)),

where the characteristic polynomial det(λ − ϕE) of (E, ϕE , F1(E)) is λn +
a1(ϕE)λ

n−1 + · · ·+ an(ϕE).

There is a result relating MY (n, d) to MGGPH
X (n, d).

Proposition 4.1 (Theorem 4.9 of [6]). There exists a birational morphism

f : MGGPH
X (n, d) → MY (n, d), (E, ϕE , F1(E)) 7→ (F, ϕF ),

where (F, ϕF ) is given by (3.1).

Remark 4.2. If gcd(n, d) = 1, then f is surjective (see Theorem 3 of [5]).

Indeed f is surjective in any case.

Proposition 4.3. f is surjective.

Proof. For each (F, ϕF ) ∈ MY (n, d), it follows from Lemma 3.8 that

(F1, ϕF1)⊕ · · · ⊕ (Fh, ϕFh
),

where each (Fi, ϕFi) is stable of rank
n
h and degree d

h . By Remark 4.2, there ex-

ists (Ei, ϕEi
, F1(Ei))∈MGGPH

X (nh ,
d
h ) such that f((Ei, ϕEi

, F1(Ei)))=(Fi, ϕFi
).

Then we have the following commutative diagram of short exact sequences:
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0 //
⊕h

i=1 Fi
//

⊕h
i=1 ϕFi

��

ν∗

(⊕h
i=1 Ei

)
//

⊕h
i=1 ν∗ϕEi

��

ν∗

(⊕h
i=1 Ei

)
⊗ C(p)/

⊕h
i=1 F1(Ei) //

(
⊕h

i=1 ν∗ϕEi)p

��

0

0 //
⊕h

i=1 Fi
// ν∗

(⊕h
i=1 Ei

)
// ν∗

(⊕h
i=1 Ei

)
⊗ C(p)/

⊕h
i=1 F1(Ei) // 0.

Hence

f((E1, ϕE1
, F1(E1))⊕ · · · ⊕ (Eh, ϕEh

, F1(Eh))) = (F1, ϕF1
)⊕ · · · ⊕ (Fh, ϕFh

).
□

Proposition 4.4 (Corollary 5.2 of [6]). (1) HGGPH : MGGPH
X (n, d) → A

is proper.
(2) HGGPH defines a proper morphism

H : f(MGGPH
X (n, d)) → A,

where f is given in Proposition 4.1.

Proposition 4.3 and Proposition 4.4(2) imply the following statement.

Corollary 4.5. HGGPH defines a proper morphism

H : MY (n, d) → A.

This H : MY (n, d) → A is the Hitchin map on MY (n, d).
Now we describe all fibers of HGGPH : MGGPH

X (n, d) → A and H : MY (n, d)
→ A. To describe all fibers of HGGPH : MGGPH

X (n, d) → A, we follow the
arguments of [8, Section 5].

Set h = gcd(n, d), n′ = n
h and d′ = d

h . If (E, ϕE , F1(E)) is a polystable good
GPH of rank n and degree d, then we have

(E, ϕE , F1(E)) ∼= (E1, ϕE1
, F1(E1))⊕ · · · ⊕ (Eh, ϕEh

, F1(Eh)),

where each (Ei, ϕEi , F1(Ei)) is stable of rank n′ and degree d′ by Lemma
3.12. Then (Ei, F1(Ei)) is stable by Proposition 3.6 and ϕEi

= ti
n′ idEi

, where

ηGGPH
n′,d′ ((xi, ti)) = [(Ei, ϕEi , F1(Ei))]S . Then

a1(ϕE) =

h∑
i=1

ti,

...

an(ϕE) =

(
t1
n′

)n′

· · ·
(
th
n′

)n′

.

Denote the image of HGGPH by An,d. If Dλ̄ is the diagonal matrix with eigen-
values λ̄ = (λ1, . . . , λh), then the following morphism

αn,d : SymhC → An,d,

[t̄]Sh
= [t1, . . . , th]Sh

7→ (a1(D 1
n′ t̄

), . . . , an(D 1
n′ t̄

))
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is bijective.
Define the projection

πh : Symh(P1 × C) → SymhC,
[(x1, t1), . . . , (xh, th)]Sh

7→ [t1, . . . , th]Sh
.

Then the following diagram

Symh(P1 × C) πh //

ηGGPH
n,d 1:1

��

SymhC

1:1 αn,d

��

MGGPH
X (n, d)

HGGPH
// An,d

commutes.
The set G = {(t1, . . . , th) ∈ Ch | ti ̸= tj if i ̸= j} forms an open dense subset

of Ch. A point of An,d is called generic if it is the image under αn,d of the
Sh-orbit of some t̄g ∈ G. An arbirtrary point of An,d is the image under αn,d

of a h-tuple of the form

t̄a = (t1,m1. . ., t1, . . . , tl, ml. . ., tl),

where h = m1 + · · ·+ml.

Proposition 4.6.

π−1
h ([t̄g]Sh

) ∼= P1 × h· · · × P1

and

π−1
h ([t̄a]Sh

) ∼= Symm1P1 × l· · · × SymmlP1 ∼= Pm1 × h· · · × Pml .

Proof. The proof is same as that of Proposition 5.1 of [8]. □

Corollary 4.7. The generic fiber of HGGPH : MGGPH
X (n, d) → An,d is set-

theoretically isomorphic to P1 × h· · · × P1. The fiber over an arbitrary point of

the base is set-theoretically isomorphic to Pm1 × h· · · × Pml . The fiber over an
arbitrary point of the base is isomorphic to P1 for the case gcd(n, d) = 1.

Proof. By Theorem 3.14, there exists a bijective morphism from the fiber of
πh to the fiber of HGGPH. So the first and the second statements follow from
Proposition 4.6. The last statement follows from Theorem 3.7(1). □

Corollary 4.8. The generic fiber of H : MY (n, d) → An,d is set-theoretically

isomorphic to Y × h· · · × Y . The fiber over an arbitrary point of the base is

set-theoretically isomorphic to Symm1Y × l· · · × SymmlY . The fiber over an
arbitrary point of the base is isomorphic to Y for the case gcd(n, d) = 1.

Proof. Note that the normalization map ν : P1 → Y induces the surjective map

g : Symh(P1 × C) → Symh(Y × C),
[(x1, t1), . . . , (xh, th)]Sh

7→ [(ν(x1), t1), . . . , (ν(xh), th)]Sh
.



GEOMETRY OF MODULI OF HIGGS PAIRS ON A NODAL CURVE 175

By Theorem 3.11(1) and Theorem 3.14(1), set-theoretically f : MGGPH
X (n, d)

→ MY (n, d) and g coincide. The map πh and g induce

π̄h : g(Symh(P1 × C)) = Symh(Y × C) → SymhC,

[(y1, t1), . . . , (yh, th)]Sh
7→ [t1, . . . , th]Sh

.

Then we have the following commutative diagram:

Symh(Y × C) π̄h //

ηn,d 1:1

��

SymhC

1:1 αn,d

��

MY (n, d)
H // An,d

So f(P1 × h· · · × P1) = Y × h· · · × Y and f(Symm1P1 × l· · · × SymmlP1) =

Symm1Y × l· · · × SymmlY . By Theorem 3.11 and Corollary 4.7, there exists a
bijective morphism from the fiber of π̄h to the fiber of H. The last statement
follows from Theorem 3.2. □

5. A flat degeneration

Assume that gcd(n, d) = 1. In this section we consider a flat degeneration of
the moduli space of stable Higgs bundles of rank n and degree d on an elliptic
curve, which was constructed in [3].

We show that the moduli space of stable Higgs bundles of rank n and degree
d on an elliptic curve degenerates to Y ×C in a flat family. We also show that
the fiber of the Hitchin map on the moduli space of stable Higgs bundles of
rank n and degree d on an elliptic curve degenerates to Y via the same flat
family.

Let Y (m) be the curves which are semistably equivalent to Y , i.e., X is a
component of Y (m) and if ν : Y (m) → Y is the canonical morphism, ν−1(p) is
a chain R of projective lines of length m, passing through p1 and p2.

Definition ([13]). A Gieseker vector bundle of rank n and degree d on Y (m)

is a vector bundle E of rank n and degree d on Y (m) such that

• If m ≥ 1, then E|R is strictly standard,
• ν∗E is a torsion-free sheaf on Y .

A Gieseker vector bundle E on Y (m) is stable if ν∗E is a stable torsion-free
sheaf on Y .

Definition ([3]). A Gieseker-Hitchin pair of rank n and degree d on Y (m) is
a pair (E, ϕ) such that E is a Gieseker vector bundle of rank n and degree d
on Y (m), ϕ is a global section of EndE and ν∗(E, ϕ) is a Higgs pair on Y . A
Gieseker-Hitchin pair (E, ϕ) on Y (m) is stable if ν∗(E, ϕ) is a stable Higgs pair
on Y .
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Let GY (n, d) be the moduli space of stable Gieseker vector bundles of rank
n and degree d on Y (m) for some 0 ≤ m ≤ n (see [13, Theorem 1]) and let
GY (n, d) the moduli space of stable Gieseker-Hitchin pairs of rank n and degree
d on Y (m) for some 0 ≤ m ≤ n (see [3, Proposition 5.13]).

By Lemma 3.1, the stability of Gieseker-Hitchin pairs can be simplified as
follows.

Lemma 5.1. A Gieseker-Hitchin pair (E, ϕ) on Y (m) is stable if and only if
the underlying Gieseker vector bundle E on Y (m) is stable.

We can see that any endomorphism of a stable Gieseker-Hitchin pair is a
scalar.

Lemma 5.2. For a stable Gieseker vector bundle E on Y (m), EndE = C.

Proof. Since any finite dimensional division algebra over C is C, it suffices to
show that any nonzero φ ∈ EndE is an isomorphism.

Consider a nonzero φ ∈ EndE. If φ|X : E|X → E|X is zero, then φ is zero
at p1 and p2. Then φ|R : E|R → E|R is zero, which is a contradiction. So
φ|X : E|X → E|X is nonzero. Since End(E|X) ∼= End(ν∗E) by [13, Remark
4], φ|X is an isomorphism. Then φ is an isomorphism at p1 and p2. Since
(det(E|R))−1 ⊗ (det(E|R)) is trivial, detφ is nowhere zero and then φ is an
isomorphism (see [9, The proof of Proposition 3.1]). □

Now we define a flat family of Gieseker vector bundles, that of Gieseker-
Hitchin pairs and their stabilities. Let R be a discrete valuation ring with
quotient field K and residue field C. Let T = SpecR, SpecK the generic point
and t0 the closed point of T . Let Z → T be a proper flat family such that the
generic fiber (ZK ,0 : SpecK → ZK) is an elliptic curve and the closed fiber
Zt0

∼= Y .

Definition ([3]). Let Z(mod) → T be a flat morphism such that there exists
a nonnegative integer m satisfying that (Z(mod))t = Y (m) for each t ∈ T with
the commutative diagram:

Z(mod) ν //

pT

""

Z

��

T

where ν restricts to the morphism which contracts the chain R of P1’s on Y (m).

(1) A Gieseker vector bundle on Z(mod) is a vector bundle ET on Z(mod)

such that its restriction to the fiber (Z(mod))t over t ∈ T is a Gieseker
vector bundle on Y (m) for some m.

(2) A Gieseker vector bundle ET on Z(mod) is stable if ν∗ET is a family of
stable torsion-free sheaves on Z → T .
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(3) A Gieseker-Hitchin pair on Z(mod) is a pair (ET , φT ) on Z(mod) such
that ET is a vector bundle on Z(mod), φT is a global section of
(pT )∗End ET and its restriction to the fiber (Z(mod))t over t ∈ T is
a Gieseker-Hitchin pair on Y (m) for some m.

(4) A Gieseker-Hitchin pair (ET , φT ) on Z(mod) is stable if ν∗(ET , φT ) is a
family of stable Higgs pairs on Z → T .

Let GZ/T (n, d) → T be the relative moduli space of stable Gieseker vec-

tor bundles of rank n and degree d on Z(mod) (see [13, Theorem 2]) and let
GZ/T (n, d) → T the relative moduli space of stable Gieseker-Hitchin pairs

of rank n and degree d on Z(mod) (see [3, Proposition 5.13]). Note that
GZ/T (n, d) → T and GZ/T (n, d) → T are flat over T (see [3, Proposition 5.15]
and [13, Theorem 2]). Moreover GZ/T (n, d)t is the moduli space of vector bun-
dles on the elliptic curve Zt for all t ̸= t0, GZ/T (n, d)t0

∼= GY (n, d), GZ/T (n, d)t
is the moduli space of Higgs bundles on the elliptic curve Zt for all t ̸= t0 and
GZ/T (n, d)t0

∼= GY (n, d).
Now we describe GY (n, d) and GY (n, d) explicitly.

Lemma 5.3. GY (n, d) ∼= Y .

Proof. Let G = GZ/T (n, d). Then G → T is flat over T such that Gt
∼= Zt for

all t ̸= t0 (see [2]) and Gt0
∼= GY (n, d).

By [13, Theorem 1 and Theorem 2], Gt0
∼= GY (n, d) is a singular curve of

arithmetic genus one.
If G̃t0 is the normalization of Gt0 with the normalization morphism π :

G̃t0 → Gt0 , then it follows from [10, Corollary V.3.7 and Proposition V.3.8]
that

pa(G̃t0) = pa(Gt0)−
r∑

i=1

ei(ei − 1)

2
,

where pa denotes the arithmetic genus and ei are the multiplicities of the in-
finitesimally near points of the singular points of Gt0 . Since pa(Gt0) = 1, then

pa(G̃t0) = 0, r = 1 and ei = 2, which implies that Gt0 has a unique ordi-

nary double point, that is, a node or a cusp. Since G̃t0 is nonsingular and

pa(G̃t0) = 0, G̃t0
∼= P1.

By [4, Lemma 3.1], the natural stratification of Gt0
∼= GY (n, d)

(Gt0)
0 = Gt0 ⊃ (Gt0)

1 ⊃ · · · ⊃ (Gt0)
n ⊃ (Gt0)

n+1 = ∅,

where (Gt0)
r+1 is the singular locus of (Gt0)

r for every 0 ≤ r ≤ n has the
following property:

• (Gt0)
i = {x ∈ (Gt0)

0 | cardinality of the set π−1(x) ≥ i+ 1} for every
0 ≤ i ≤ n.

• (Gt0)
i+1 is a Zariski-closed subvariety of (Gt0)

i of pure codimension 1,
if non-empty.
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Since Gt0 is a curve, (Gt0)
2 = ∅ and

(Gt0)
1 = {x ∈ (Gt0)

0 | cardinality of the set π−1(x) = 2}.
Hence the unique singular point of Gt0 is a node and then Gt0

∼= Y . □

Lemma 5.4. GY (n, d) ∼= GY (n, d)× C ∼= Y × C.

Proof. The proof is same as that of Theorem 3.2 and Theorem 5.8(1). We use
Lemma 5.1, Lemma 5.2 and Lemma 5.3. □

The Hitchin map on GZ/T (n, d) is defined as follows.

Definition (Definition 6.2 of [3]). The Hitchin map on GZ/T (n, d) is defined
by

HGH : GZ/T (n, d) → AT ,

(ET , φT ) 7→ (a1(φT ), . . . , an(φT )),

where AT →T is the affine T -scheme representing the functor

S 7→
n⊕

i=1

H0(Z ×T S,OZ×TS)

and the characteristic polynomial det(λ− φT ) of (ET , φT ) is

λn + a1(φT )λ
n−1 + · · ·+ an(φT ).

Proposition 5.5 (Theorem 6.6 of [3]). HGH : GZ/T (n, d) → AT is proper over
T .

By [13, Theorem 1 and Theorem 2], there exist proper and birational mor-
phisms

νGV
∗ : GY (n, d) → UY (n, d), E 7→ ν∗E

and
νGV
∗ : GZ/T (n, d) → UZ/T (n, d), ET 7→ ν∗ET ,

where UZ/T (n, d) denotes the relative moduli space of stable torsion-free sheaves
of rank n and degree d on Z. By [3, Corollary 5.14], there exist proper and
birational morphisms

νGH
∗ : GY (n, d) → MY (n, d), (E, ϕ) 7→ ν∗(E, ϕ)

and
νGH
∗ : GZ/T (n, d) → MZ/T (n, d), (ET , φT ) 7→ ν∗(ET , φT ),

where MZ/T (n, d) denotes the relative moduli space of stable Higgs pairs of
rank n and degree d on Z.

Indeed we have the following observation.

Proposition 5.6. (1) νGV
∗ : GY (n, d) → UY (n, d) is identified with the

identity map idY : Y → Y .
(2) νGH

∗ : GY (n, d) → MY (n, d) is identified with the identity map idY×C :
Y × C → Y × C.
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Proof. By [4, Proposition 3.1] and Lemma 5.3, the singular locus of GY (n, d)
consists of stable Gieseker vector bundles on Y (1) and it corresponds to the
single node p of Y . Moreover the image of the singular locus of GY (n, d)
under νGV

∗ is exactly the singular locus of UY (n, d) by [7, Remark 2.3]. Thus
νGV
∗ : GY (n, d) → UY (n, d) is identified with the identity map idY : Y →
Y . Moreover νGH

∗ : GY (n, d) → MY (n, d) is identified with the identity map
idY×C : Y × C → Y × C by Theorem 3.2 and Lemma 5.4. □

Lemma 5.3 is relativized as follows.

Lemma 5.7. GZ/T (n, d) ∼= Z as T -schemes.

Proof. We first see that UZ/T (1, d) ∼= Z as T -schemes. Let T ′ = T \ {t0}. For
any T ′-scheme S, we have the following isomorphism

Z|T ′(S) → UZ/T (1, d)|T ′(S), σ 7→ OZ|T ′ (σ)⊗OZ|T ′ (0)
d−1

on S-valued points, where 0 : S → Z|T ′ is a section which makes (Z|T ′ ,0)
a flat family of elliptic curves. Then we have an isomorphism γ : Z|T ′ →
UZ/T (1, d)|T ′ by [1, Lemma 5.7]. By [1, Corollary 5.4], γ extends uniquely to
an isomorphism Z → UZ/T (1, d) over T .

Next we see that UZ/T (n, d) ∼= Z as T -schemes. Consider the relative de-
terminant morphism detZ/T : UZ/T (n, d) → UZ/T (1, d). Since (detZ/T )t :
UZ/T (n, d)t → UZ/T (1, d)t is an isomorphism for all t ∈ T ′, detZ/T |T ′ :
UZ/T (n, d)|T ′ → UZ/T (1, d)|T ′ is also an isomorphism by [1, Lemma 5.7]. By
[1, Corollary 5.4], detZ/T |T ′ extends uniquely to an isomorphism detZ/T :
UZ/T (n, d) → UZ/T (1, d). Since we have seen that UZ/T (1, d) ∼= Z, we get an
isomorphism UZ/T (n, d) → Z over T .

Now we claim that GZ/T (n, d) ∼= Z as T -schemes. Consider the morphism

νGV
∗ : GZ/T (n, d) → UZ/T (n, d), ET 7→ ν∗ET .

For all t ̸= t0, (ν
GV
∗ )t : GZ/T (n, d)t → UZ/T (n, d)t is the identity map idZt

:

Zt → Zt. By Proposition 5.6(1), (νGV
∗ )t0 : GZ/T (n, d)t0 → UZ/T (n, d)t0 is

also the identity map idY : Y → Y . Thus νGV
∗ : GZ/T (n, d) → UZ/T (n, d) is

the identity map idZ : Z → Z by [1, Corollary 5.4 and Lemma 5.7]. Since
we have seen that UZ/T (n, d) ∼= Z as T -schemes, we get GZ/T (n, d) ∼= Z as
T -schemes. □

We have a conclusion as follows.

Theorem 5.8. (1) GZ/T (n, d) ∼= GZ/T (n, d)× C ∼= Z × C as T -schemes.

(2) νGH
∗ : GZ/T (n, d) → MZ/T (n, d) is identified with the identity map
idZ×C : Z × C → Z × C.

(3) The fiber of the Hitchin map HGH on GZ/T (n, d) is isomorphic to Z.

Proof. (1) By using the construction of GZ/T (n, d) in [3, Section 5], we show
that GZ/T (n, d) ∼= GZ/T (n, d)× C.
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Note that UZ/T (n, d) ∼= Rs
T //PGL(d) for some T -scheme RT . The Gieseker

functor GRT
is represented by a PGL(d)-invariant open subscheme Y of the T -

scheme HilbP1(Z×TGr(d, n)) for some Hilbert polynomial P1 and GZ/T (n, d) ∼=
Ys//PGL(d). Let ∆Y ⊂ Z ×T Y ×T Gr(d, n) be the universal object defining
the functor GRT

. The embedding ∆Y ⊂ Z ×T Y ×T Gr(d, n) gives the natural
projection of T -schemes:

∆Y
q

//

p
  

Y

r
��

T

Let U be the universal vector bundle on ∆Y |Ys obtained from the tautological
quotient bundle on Gr(d, n). Applying [14, Lemma 3.5] with F = EndU , we
get a linear scheme YGH → Ys given by

YGH = SpecSymOYs (q∗EndU)∨.
Since q∗EndU ∼= OYs by Lemma 5.2 and the same argument of the proof of
[12, Lemma 4.6.3], we have YGH ∼= Ys ×C. Lemma 5.1 implies that (YGH)s ∼=
Ys × C.

Hence by the construction of [3, Section 5] and Lemma 5.7,

GZ/T (n, d) ∼= (YGH)s//PGL(d) ∼= (Ys//PGL(d))×C ∼= GZ/T (n, d)×C ∼= Z×C.
(2) We first show that MZ/T (n, d) ∼= UZ/T (n, d)×C by the same argument

as in the proof of item (1). Note that UZ/T (n, d) ∼= Rs
T //PGL(d) for some

T -scheme RT as mentioned. Let U be the restriction of the universal sheaf to
Z ×T Rs

T . [14, Lemma 3.5] with F = EndU , the fact πRs
T ∗EndU ∼= ORs

T
from

[12, Lemma 4.6.3], Lemma 3.1 and the proof of Lemma 5.7 implies that

MZ/T (n, d) ∼= UZ/T (n, d)× C ∼= Z × C.

Now we describe νGH
∗ : GZ/T (n, d) → MZ/T (n, d). Since

GZ/T (n, d) ∼= GZ/T (n, d)× C

in item (1) and MZ/T (n, d) ∼= UZ/T (n, d) × C as shown previously, νGH
∗ is

exactly νGV
∗ × idC : GZ/T (n, d)× C → UZ/T (n, d)× C. In the proof of Lemma

5.7, we have seen that νGV
∗ : GZ/T (n, d) → UZ/T (n, d) is the identity map

idZ : Z → Z. Thus we get the statement.
(3) By the definition of HGH and GZ/T (n, d) ∼= Z × C in item (1), HGH is

identified with the projection Z ×C → C onto the second factor. Thus we get
the result. □
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