References
- W. L. Baily, Satake's compactification of Vn, Amer. J. Math. 80 (1958), 348-364. https://doi.org/10.2307/2372789
- D. Bump, Automorphic forms on GL(3, R), Lecture Notes in Mathematics, 1083, Springer, Berlin, 1984. https://doi.org/10.1007/BFb0100147
- G. Codogni, Hyperelliptic Schottky problem and stable modular forms, Doc. Math. 21 (2016), 445-466. https://doi.org/10.4171/dm/538
- G. Codogni and N. I. Shepherd-Barron, The non-existence of stable Schottky forms, Compos. Math. 150 (2014), no. 4, 679-690. https://doi.org/10.1112/S0010437X13007586
- A. Comessatti, Sulle variet'a abeliane reali. I, II., Ann. Mat. Pura Appl. 2 (1925), no. 1, 67-106; 4 (1926), 27-72. https://doi.org/10.1007/BF02418645
- E. Freitag, Stabile Modulformen, Math. Ann. 230 (1977), no. 3, 197-211. https://doi.org/10.1007/BF01367576
- E. Freitag, Siegelsche Modulfunktionen, Grundlehren der mathematischen Wissenschaften, 254, Springer, Berlin, 1983. https://doi.org/10.1007/978-3-642-68649-8
- D. Goldfeld, Automorphic forms and L-functions for the group GL(n, ℝ), Cambridge Studies in Advanced Mathematics, 99, Cambridge Univ. Press, Cambridge, 2006. https://doi.org/10.1017/CBO9780511542923
- M. Goresky and Y.-S. Tai, The moduli space of real abelian varieties with level structure, Compositio Math. 139 (2003), no. 1, 1-27. https://doi.org/10.1023/B:COMP.0000005079.56232.e3
- D. Grenier, Fundamental domains for the general linear group, Pacific J. Math. 132 (1988), no. 2, 293-317. http://projecteuclid.org/euclid.pjm/1102689682 102689682
- D. Grenier, An analogue of Siegel's ϕ-operator for automorphic forms for GLn(ℤ), Trans. Amer. Math. Soc. 333 (1992), no. 1, 463-477. https://doi.org/10.2307/2154119
- D. Grenier, On the shape of fundamental domains in GL(n, ℝ)/O(n), Pacific J. Math. 160 (1993), no. 1, 53-66. http://projecteuclid.org/euclid.pjm/1102624564 102624564
- K. Imai and A. Terras, The Fourier expansion of Eisenstein series for GL(3, ℤ), Trans. Amer. Math. Soc. 273 (1982), no. 2, 679-694. https://doi.org/10.2307/1999935
- H. Maass, Die Bestimmung der Dirichletreihen mit Grossencharakteren zu den Modulformen n-ten Grades, J. Indian Math. Soc. (N.S.) 19 (1955), 1-23.
- H. Maass, Siegel's modular forms and Dirichlet series, Lecture Notes in Mathematics, Vol. 216, Springer, Berlin, 1971.
- H. Minkowski, Gesammelte Abhandlungen, Chelsea, New York, 1967.
- D. Mumford, Abelian Varieties, Oxford University Press, 1970: Reprinted 1985.
- A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956), 47-87; Collected Papers, Volume I, Springer-Verlag (1989), 423-463.
- A. Selberg, Discontinuous groups and harmonic analysis, Proceedings of ICM, Stockholm (1962), 177-189; Collected Papers, Volume I, Springer-Verlag (1989), 493-505.
- M. Seppala and R. Silhol, Moduli spaces for real algebraic curves and real abelian varieties, Math. Z. 201 (1989), no. 2, 151-165. https://doi.org/10.1007/BF01160673
- C. L. Siegel, The volume of the fundamental domain for some infinite groups, Trans. Amer. Math. Soc. 39 (1936), no. 2, 209-218. https://doi.org/10.2307/1989745
- R. Silhol, Real abelian varieties and the theory of Comessatti, Math. Z. 181 (1982), no. 3, 345-364. https://doi.org/10.1007/BF01161982
- R. Silhol, Real Algebraic Surfaces, Lecture Notes in Mathematics, 1392, Springer, Berlin, 1989. https://doi.org/10.1007/BFb0088815
- R. Silhol, Compactifications of moduli spaces in real algebraic geometry, Invent. Math. 107 (1992), no. 1, 151-202. https://doi.org/10.1007/BF01231886
- A. Terras, Harmonic Analysis on Symmetric Spaces and Applications. II, Springer, Berlin, 1988. https://doi.org/10.1007/978-1-4612-3820-1
- J.-H. Yang, Polarized real tori, J. Korean Math. Soc. 52 (2015), no. 2, 269-331. https://doi.org/10.4134/JKMS.2015.52.2.269