DOI QR코드

DOI QR Code

The influence of concrete degradation on seismic performance of gravity dams

  • Ahmad Yamin Rasa (Department of Civil Engineering, Engineering Faculty, Ataturk University) ;
  • Ahmet Budak (Department of Civil Engineering, Engineering Faculty, Ataturk University) ;
  • Oguz Akin Duzgun (Department of Civil Engineering, Engineering Faculty, Ataturk University)
  • Received : 2023.04.23
  • Accepted : 2023.12.20
  • Published : 2024.01.25

Abstract

This paper presents a dam-reservoir interaction model that includes, water compressibility, sloshing of surface water, and radiation damping at the far-end reservoir, to investigate the influence of concrete deterioration on seismic behavior along with seismic performance of gravity dams. Investigations on seismic performance of the dam body have been conducted using the linear time-history responses obtained under six real and 0.3 g normalized earthquake records with time durations from 10 sec to 80 sec. The deterioration of concrete is assumed to develop due to mechanical and chemical actions over the dam lifespan. Several computer programs have been developed in FORTRAN 90 and MATLAB programming languages to analyze the coupled problem considering two-dimensional (2D) plane-strain condition. According to the results obtained from this study, the dam structure shows critical responses at the later ages (75 years) that could cause disastrous consequences; the critical effects of some earthquake loads such as Chi-Chi with 36.5% damage and Loma with 56.2% damage at the later ages of the selected dam body cannot be negligible; and therefore, the deterioration of concrete along with its effects on the dam response should be considered in analysis and design.

Keywords

Acknowledgement

The research described in this paper was not financially supported by any organization.

References

  1. Abouseeda, H. and Dakoulas, P. (1998), "Non-linear dynamic earth dam-foundation interaction using a BE-FE method", Earthq. Eng. Struct. Dyn., 27(9), 917-936. https://doi.org/10.1002/(SICI)10969845(199809)27:9<917::AID-EQE763>3.0.CO;2-A
  2. Akkas, N., Akay, H. and Yilmaz, C. (1979), "Applicability of general-purpose finite element programs in solid-fluid interaction problems", Comput. Struct., 10(5), 773-783. https://doi.org/10.1016/0045-7949(79)90041-5.
  3. Ardebili, M.A. and Mirzabozorg, H. (2012), "Effects of near-fault ground motions in seismic performance evaluation of a symmetric arch dam", Soil Mech. Found. Eng., 49(5), 192-199. https://doi.org/10.1007/s11204-012-9189-1.
  4. Arici, Y. and Soysal, B.F. (2022), "Predicting seismic damage on concrete gravity dams: a review", Struct. Infrastruct. Eng., 1-20. https://doi.org/10.1080/15732479.2022.2141270
  5. Azizan, N.Z.N., Mandal, A., Majid, T.A., Maity, D. and Nazri, F.M. (2017), "Numerical prediction of stress and displacement of ageing concrete dam due to alkali-aggregate and thermal chemical reaction", Struct. Eng. Mech., 64(6), 793-802. https://doi.org/10.12989/sem.2017.64.6.793.
  6. Bayraktar, A., Turker, T., Akkose, M. and Ates, S. (2010), "The effect of reservoir length on seismic performance of gravity dams to near-and far-fault ground motions", Nat. Hazards, 52(2), 257-275. https://doi.org/10.1007/s11069-009-9368-1.
  7. Bellego, C.L., Gerard, B. and Pijaudier-Cabot, G. (2000), "Chemo-mechanical effects in mortar beams subjected to water hydrolysis", J. Eng. Mech., 126(3), 266-272. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:3(266).
  8. Bettess, P. and Bettess, J.A. (1984), "Infinite elements for static problems", Eng. Comput., 1(1), 4-16. https://doi.org/10.1108/eb023555.
  9. Bettess, P. and Zienkiewicz, O. (1977), "Diffraction and refraction of surface waves using finite and infinite elements", Int. J. Numer. Methods Eng., 11(8), 1271-1290. https://doi.org/10.1002/nme.1620110808.
  10. Burman, A. (2011), "Transient analysis of aged concrete dam foundation coupled system", PhD Thesis, Indian Institute of Technology Guwahati, Assam, India.
  11. Calayir, Y. and Karaton, M. (2005), "Seismic fracture analysis of concrete gravity dams including dam-reservoir interaction", Comput. Struct., 83(19), 1595-1606. https://doi.org/10.1016/j.compstruc.2005.02.003.
  12. Chopra, A.K. (2020), Earthquake Engineering for Concrete Dams: Analysis, Design, and Evaluation, John Wiley and Sons, Hoboken, NJ, USA.
  13. Chopra, A.K. and Chakrabarti, P. (1971), "The Koyna earthquake of December 11, 1967, and the performance of Koyna Dam", College of Engineering, Earthquake Engineering Research Center, University of California, Berkeley, CA, USA.
  14. Chopra, A.K. and Chakrabarti, P. (1973), "The Koyna earthquake and the damage to Koyna dam", Bull. Seismol. Soc. Am., 63(2), 381-397. https://doi.org/10.1785/BSSA0630020381.
  15. Chuhan, Z. and Chongbin, Z. (1987), "Coupling method of finite and infinite elements for strip foundation wave problems", Earthq. Eng. Struct. Dyn., 15(7), 839-851. https://doi.org/10.1002/eqe.4290150705.
  16. Clough, R. and Penzien, J. (1975), Dynamics of Structures, McGraw-Hill, New York, NY, USA.
  17. Dolen, T.P. (2005), "Materials properties model of aging concrete", Report DSO-05-05; Dam Safety Technology Development Program, Denver, COI, USA.
  18. Dominguez, J. and Medina, F. (1989), "Boundary elements for the analysis of the seismic response of dams including dam-water-foundation interaction effects. II", Eng. Anal. Bound. Elem., 6(3), 58-163. https://doi.org/10.1016/0955-7997(89)90031-3.
  19. Dominguez, J. and Meise, T. (1991), "On the use of the BEM for wave propagation in infinite domains", Eng. Anal. Bound. Elem., 8(3), 132-138. https://doi.org/10.1016/0955-7997(91)90022-L.
  20. Durbin, F. (1974), "Numerical inversion of Laplace transforms: An efficient improvement to Dubner and Abate's method", Comput. J., 17(4), 371-376. https://doi.org/10.1093/comjnl/17.4.371.
  21. Duzgun, O.A. and Budak, A. (2015), "Effects of surface shapes and geotechnical conditions on the ground motion", KSCE J. Civil Eng., 19(5), 1336-1346. https://doi.org/10.1007/s12205-015-0304-5.
  22. Ghanaat, Y. (2004), "Failure modes approach to safety evaluation of dams", 13th World Conference on Earthquake Engineering, Vancouver, Canada, August.
  23. Ghrib, F. and Tinawi, R. (1995), "An application of damage mechanics for seismic analysis of concrete gravity dams", Earthq. Eng. Struct. Dyn., 24(2), 157-173. https://doi.org/10.1002/eqe.4290240203.
  24. Gogoi, I. and Maity, D. (2007), "Influence of sediment layers on dynamic behavior of aged concrete dams", J. Eng. Mech., 133(4), 400-413. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:4(400).
  25. Gorai, S. and Maity, D. (2019), "Seismic response of concrete gravity dams under near field and far field ground motions", Eng. Struct., 196, 109292. https://doi.org/10.1016/j.engstruct.2019.109292.
  26. Gorai, S. and Maity, D. (2021), "Numerical investigation on seismic behaviour of aged concrete gravity dams to near source and far source ground motions", Nat. Hazards, 105(1), 943-966. https://doi.org/10.1007/s11069-020-04344-7.
  27. Grimal, E., Sellier, A., Multon, S., Le Pape, Y. and Bourdarot, E. (2010), "Concrete modelling for expertise of structures affected by alkali aggregate reaction", Cem. Concrete Res., 40(4), 502-507. https://doi.org/10.1016/j.cemconres.2009.09.007.
  28. Gupta, S. and Gupta, I.D. (2004), "The prediction of earthquake peak ground acceleration in Koyna region, India", Thirteenth World Conference on Earthquake Engineering, Vancouver, Canada, August.
  29. Haciefendioglu, K., Basaga, H.B., Bayraktar, A. and Ates, S. (2007), "Nonlinear analysis of rock-fill dams to non-stationary excitation by the stochastic Wilson-θ method", Appl. Math. Comput., 194(2), 333-345. https://doi.org/10.1016/j.amc.2007.04.053.
  30. Haciefendioglu, K., Soyluk, K. and Birinci, F. (2012), "Numerical investigation of stochastic response of an elevated water tank to random underground blast loading", Stoch. Environ. Res. Risk Assess., 26(4), 599-607. https://doi.org/10.1007/s00477-011-0518-0.
  31. Ho, J.C.M., Liang, Y., Wang, Y.H., Lai, M.H., Huang, Z.C., Yang, D. and Zhang, Q.L. (2022), "Residual properties of steel slag coarse aggregate concrete after exposure to elevated temperatures", Constr. Build. Mater., 316, 125751. https://doi.org/10.1016/j.conbuildmat.2021.125751.
  32. Klaus-Jurgen, B. (1982), Finite Element Procedures in Engineering Analysis, Prentice-Hall, Hoboken, NJ, USA.
  33. Kucukarslan, S. (2004), "Time-domain dynamic analysis of dam-reservoir-foundation interaction including the reservoir bottom absorption", Int. J. Numer. Anal. Methods Geomech., 28(9), 963-980. https://doi.org/10.1002/nag.369.
  34. Kuhl, D., Bangert, F. and Meschke, G. (2004a), "Coupled chemo-mechanical deterioration of cementitious materials Part II: Numerical methods and simulations", Int. J. Solids Struct., 41(1), 41-67. https://doi.org/10.1016/j.ijsolstr.2003.08.004.
  35. Kuhl, D., Bangert, F. and Meschke, G. (2004b), "Coupled chemo-mechanical deterioration of cementitious materials. Part I: Modeling", Int. J. Solids Struct., 41(1), 15-40. https://doi.org/10.1016/j.ijsolstr.2003.08.005.
  36. Lai, M.H., Huang, Z.C., Wang, C.T., Wang, Y.H., Chen, L.J. and Ho, J.C.M. (2022a), "Effect of fillers on the behaviour of low carbon footprint concrete at and after exposure to elevated temperatures", J. Build. Eng., 51, 104117. https://doi.org/10.1016/j.jobe.2022.104117.
  37. Lai, M.H., Wu, K., Ou, X., Zeng, M., Li, C. and Ho, J.C.M. (2022b), "Effect of concrete wet packing density on the uni-axial strength of manufactured sand CFST columns", Struct. Concrete, 23(4), 2615-2629. https://doi.org/10.1002/suco.202100280.
  38. Lai, M. H., Hanzic, L., and Ho, J.C. (2019), "Fillers to improve passing ability of concrete", Struct. Concrete, 20(1), 185-197. https://doi.org/10.1002/suco.201800047
  39. Lai, M.H., Wu, K.J., Cheng, X., Ho, J.C.M., Wu, J.P., Chen, J.H. and Zhang, A.J. (2022c), "Effect of fillers on the behaviour of heavy-weight concrete made by iron sand", Constr. Build. Mater., 332, 127357. https://doi.org/10.1016/j.conbuildmat.2022.127357.
  40. Lai, M.H., Griffith, A.M., Hanzic, L., Wang, Q. and Ho, J.C.M. (2021a), "Interdependence of passing ability, dilatancy and wet packing density of concrete", Constr. Build. Mater., 270, 121440. https://doi.org/10.1016/j.conbuildmat.2020.121440.
  41. Lai, M.H., Chen, Z.H., Wang, Y.H. and Ho, J.C.M. (2022d), "Effect of fillers on the mechanical properties and durability of steel slag concrete", Constr. Build. Mater., 335, 127495. https://doi.org/10.1016/j.conbuildmat.2022.127495.
  42. Lai, M.H., Binhowimal, S.A.M., Hanzic, L., Wang, Q. and Ho, J.C.M. (2020a), "Cause and mitigation of dilatancy in cement powder paste", Constr. Build. Mater., 236, 117595. https://doi.org/10.1016/j.conbuildmat.2019.117595.
  43. Lai, M.H., Binhowimal, S.A.M., Hanzic, L., Wang, Q. and Ho, J.C.M. (2020b), "Dilatancy mitigation of cement powder paste by pozzolanic and inert fillers", Struct. Concrete, 21(3), 1164-1180. https://doi.org/10.1002/suco.201900320.
  44. Lai, M.H., Lao, W.C., Tang, W.K., Hanzic, L., Wang, Q. and Ho, J.C.M. (2023), "Dilatancy swerve in superplasticized cement powder paste", Constr. Build. Mater., 362, 129524. https://doi.org/10.1016/j.conbuildmat.2022.129524.
  45. Lai, M.H., Binhowimal, S.A.M., Griffith, A.M., Hanzic, L., Wang, Q., Chen, Z. and Ho, J.C.M. (2021b), "Shrinkage design model of concrete incorporating wet packing density", Constr. Build. Mater., 280, 122448. https://doi.org/10.1016/j.conbuildmat.2021.122448.
  46. Lai, M.H., Binhowimal, S.A.M., Griffith, A.M., Hanzic, L., Chen, Z., Wang, Q. and Ho, J.C.M. (2022e), "Shrinkage, cementitious paste volume, and wet packing density of concrete", Struct. Concrete, 23(1), 488-504. https://doi.org/10.1002/suco.202000407.
  47. Maeso, O. and Dominguez, J. (1993), "Earthquake analysis of arch dams. I: Dam-foundation interaction", J. Eng. Mech., 119(3), 496-512. https://doi.org/10.1061/(ASCE)0733-9399(1993)119:3(496).
  48. Medina, F., Dominguez, J. and Tassoulas, J.L. (1990), "Response of dams to earthquakes including effects of sediments", J. Struct. Eng., 116(11), 3108-3121. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:11(3108).
  49. Nayak, P. and Maity, D. (2013), "Seismic damage analysis of aged concrete gravity dams", Int. J. Comput. Methods Eng., 14(5), 424-439. https://doi.org/10.1080/15502287.2013.784380.
  50. Oluokun, F.A., Burdette, E.G. and Deatherage, J.H. (1991), "Splitting tensile strength and compressive strength relationships at early ages", J. Mater., 88(2), 115-121. https://doi.org/10.14359/1859.
  51. Pan, J., Feng, Y., Jin, F. and Zhang, C. (2013), "Numerical prediction of swelling in concrete arch dams affected by alkali-aggregate reaction", Eur. J. Environ. Civil Eng., 17(4), 231-247. https://doi.org/10.1080/19648189.2013.771112.
  52. Pan, J., Xu, Y., Jin, F. and Zhang, C. (2014), "A unified approach for long-term behavior and seismic response of AAR-affected concrete dams", Soil Dyn. Earthq. Eng., 63, 193-202. https://doi.org/10.1016/j.soildyn.2014.03.018.
  53. Peer (2013), PEER Strong Motion Database, Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, USA. http://peer.berkeley.edu
  54. Raphael, J.M. (1984), "Tensile strength of concrete", J. Proc., 81(2), 158-165. https://doi.org/10.14359/10653.
  55. Rasa, A.Y. (2017), "C ok katli yapilarin gecici titresimlerinin durum-uzayi yaklasimi ile incelenmesi ve modlarin birlestirilmesi yontemiyle bir karsilastirma", Master's Thesis, Ataturk University, Erzurum, Turkiye.
  56. Rasa, A.Y. and Budak, A. (2021), "Static and dynamic investigation of structure-foundation-reservoir problem utilizing finite element method", Transactions of International Congress on the Phenomenological Aspects of Civil Engineering (PACE-2021), Erzurum, Turkiye, June.
  57. Rasa, A.Y., Budak, A. and Duzgun, O.A. (2022), "An efficient finite element model for dynamic analysis of gravity dam-reservoir-foundation interaction problems", Latin Am. J. Solids Struct., 19(6), e459. https://doi.org/10.1590/1679-78257178.
  58. Rasa, A.Y. (2023), "Modeling of the dams body-water-soil interaction problems by finite element method and investigation of the system behavior under dynamic loads", Ph.D. Thesis, Ataturk University, Erzurum, Turkiye.
  59. Rasa, A.Y., Budak, A. and Duzgun, O.A. (2023a), "Concrete deterioration effects on dynamic behavior of gravity dam-reservoir interaction problems", J. Vib. Eng. Technol., 2023, 1-20. https://doi.org/10.1007/s42417-022-00842-z.
  60. Rasa, A.Y., Budak, A. and Duzgun, O.A. (2023b), "Seismic performance evaluation of concrete gravity dams using an efficient finite element model", J. Vib. Eng. Technol., 2023, 1-20. https://doi.org/10.1007/s42417-023-01002-7.
  61. Rasa, A.Y., Budak, A. and Duzgun, O.A. (2023c), "Concrete ageing effect on the dynamic response of machine foundations considering soil-structure interaction", J. Vib. Eng., 2023, 1-13. https://doi.org/10.1007/s42417-023-01055-8.
  62. Rasa, A.Y. and Ozyazicioglu, M.H. (2021), "Determination of the exact mode frequencies of multi-storey structures by state-space method and a comparison with mode superposition method", Chall. J. Struct. Mech., 7(1), 1-10. https://doi.org/10.20528/cjsmec.2021.01.001.
  63. Sun, B., Deng, M., Zhang, S., Wang, C. and Du, M. (2022), "Seismic performance assessment of high asphalt concrete core rockfill dam considering shorter duration and longer duration", Struct., 39, 1204-1217. https://doi.org/10.1016/j.istruc.2022.03.040.
  64. Tsai, C., Lee, G. and Yeh, C. (1992), "Time-domain analyses of three-dimensional dam-reservoir interactions by BEM and semi-analytical method", Eng. Anal. Bound. Elem., 10(2), 107-118. https://doi.org/10.1016/0955-7997(92)90039-A.
  65. USACE (2003), Time-History Dynamic Analysis of Concrete Hydraulic Structures, United States Army Crops of Engineers (USACE), Washington, D.C., USA.
  66. Wang, C., Zhang, H., Zhang, Y., Guo, L., Wang, Y. and Thira Htun, T.T. (2021), "Influences on the seismic response of a gravity dam with different foundation and reservoir modeling assumptions", Water, 13(21), 3072. https://doi.org/10.3390/w13213072.
  67. Wang, G., Wang, Y., Zhou, W. and Zhou, C. (2015), "Integrated duration effects on seismic performance of concrete gravity dams using linear and nonlinear evaluation methods", Soil Dyn. Earthq. Eng., 79, 223-236. https://doi.org/10.1016/j.soildyn.2015.09.020.
  68. Wang, G., Zhang, S., Wang, C. and Yu, M. (2014), "Seismic performance evaluation of dam-reservoir-foundation systems to near-fault ground motions", Nat. Hazards, 72(2), 651-674. https://doi.org/10.1007/s11069-013-1028-9.
  69. Washa, G.W., Saemann, J.C. and Cramer, S.M. (1989), "Fifty-year properties of concrete made in 1937", J. Mater., 86(4), 367-371. https://doi.org/10.14359/2139.
  70. Wilson, E.L. and Khalvati, M. (1983), "Finite elements for the dynamic analysis of fluid-solid systems", Int. J. Numer. Methods Eng., 19(11), 1657-1668. https://doi.org/10.1002/nme.1620191105.
  71. Withey, M. (1961), "Fifty year compression test of concrete", J. Proc., 58(12), 695-712. https://doi.org/10.14359/8003.
  72. Yerli, H., Temel, B. and Kiral, E. (1998), "Transient infinite elements for 2D soil-structure interaction analysis", J. Geotech. Geoenviron. Eng., 124(10), 976-988. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:10(976).
  73. Zhang, S., Wang, G., Pang, B. and Du, C. (2013), "The effects of strong motion duration on the dynamic response and accumulated damage of concrete gravity dams", Soil Dyn. Earthq. Eng., 45, 112-124. https://doi.org/10.1016/j.soildyn.2012.11.011.
  74. Zhuang, X., Liang, Y., Ho, J.C.M., Wang, Y.H., Lai, M., Li, X., Xu, Z. and Xu, Y. (2022), "Post-fire behavior of steel slag fine aggregate concrete", Struct. Concrete, 23(6), 3672-3695. https://doi.org/10.1002/suco.202100677
  75. Zienkiewicz, O.C. and Taylor, R.L. (2000), The Finite Element Method: Solid mechanics, Butterworth-Heinemann, Oxford, UK.