Acknowledgement
The authors thank Professor Hoon Ryu from the Korea Institute of Science and Technology for providing the cell lines. This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2019R1F1A1044048) (YSK).
References
- Ahmed, M. and Phillips, M. (2011) Neurodegenerative disorders. In Problem Solving in Neuroradiology, pp. 333-360.
- Allerton, T. D., Proctor, D. N., Stephens, J. M., Dugas, T. R., Spielmann, G. and Irving, B. A. (2018) L-citrulline supplementation: Impact on cardiometabolic health. Nutrients 10, 921. https://doi.org/10.3390/nu10070921
- Almer, G., Vukosavic, S., Romero, N. and Przedborski, S. (1999) Inducible nitric oxide synthase up-regulation in a transgenic mouse model of familial amyotrophic lateral sclerosis. J. Neurochem. 72, 2415-2425. https://doi.org/10.1046/j.1471-4159.1999.0722415.x
- Bahri, S., Zerrouk, N., Aussel, C., Moinard, C., Crenn, P., Curis, E., Chaumeil, J. C., Cynober, L. and Sfar, S. (2013) Citrulline: from metabolism to therapeutic use. Nutrition 29, 479-484. https://doi.org/10.1016/j.nut.2012.07.002
- da Silva, M. P., Cedraz-Mercez, P. L. and Varanda, W. A. (2014) Effects of nitric oxide on magnocellular neurons of the supraoptic nucleus involve multiple mechanisms. Braz. J. Med. Biol. Res. 47, 90-100. https://doi.org/10.1590/1414-431X20133326
- Dawson, V. L., Dawson, T. M., Bartley, D. A., Uhl, G. R. and Snyder, S. H. (1993) Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J. Neurosci. 13, 2651-2661. https://doi.org/10.1523/JNEUROSCI.13-06-02651.1993
- Fonseca, S. G., Romao, P. R. T., Figueiredo, F., Morais, R. H., Lima, H. C., Ferreira, S. H. and Cunha, F. Q. (2003) TNF-α mediates the induction of nitric oxide synthase in macrophages but not in neutrophils in experimental cutaneous leishmaniasis. Eur. J. Immunol. 33, 2297-2306. https://doi.org/10.1002/eji.200320335
- Forstermann, U. and Sessa, W. C. (2012) Nitric oxide synthases: regulation and function. Eur. Heart J. 33, 829-837. https://doi.org/10.1093/eurheartj/ehr304
- Gubert, F., Bonacossa-Pereira, I., Decotelli, A. B., Furtado, M., Vasconcelos-dos-Santos, A., Mendez-Otero, R. and Santiago, M. F. (2019) Bone-marrow mononuclear cell therapy in a mouse model of amyotrophic lateral sclerosis: functional outcomes from different administration routes. Brain Res. 1712, 73-81. https://doi.org/10.1016/j.brainres.2019.02.003
- Gyawali, A., Gautam, S., Hyeon, S. J., Ryu, H. and Kang, Y. S. (2021a) L-citrulline level and transporter activity are altered in experimental models of amyotrophic lateral sclerosis. Mol. Neurobiol. 58, 647-657. https://doi.org/10.1007/s12035-020-02143-6
- Gyawali, A. and Kang, Y. S. (2019) Blood-to-retina transport of imperatorin involves the carrier-mediated transporter system at the inner blood-retinal barrier. J. Pharm. Sci. 108, 1619-1626. https://doi.org/10.1016/j.xphs.2018.11.040
- Gyawali, A., Kim, M. H. and Kang, Y. S. (2021b) A novel organic cation transporter involved in paeonol transport across the inner blood-retinal barrier and changes in uptake in high glucose conditions. Exp. Eye Res. 202, 108387. https://doi.org/10.1016/j.exer.2020.108387
- Hensley, K., Abdel-Moaty, H., Hunter, J., Mhatre, M., Mhou, S., Nguyen, K., Potapova, T., Pye, Q. N., Qi, M., Rice, H., Stewart, C. and West, M. (2006) Primary glia expressing the G93A-SOD1 mutation present a neuroinflammatory phenotype and provide a cellular system for studies of glial inflammation. J. Neuroinflammation 3, 2. https://doi.org/10.1186/1742-2094-3-2
- Hsu, H. Y. and Wen, M. H. (2002) Lipopolysaccharide-mediated reactive oxygen species and signal transduction in the regulation of interleukin-1 gene expression. J. Biol. Chem. 277, 22131-22139. https://doi.org/10.1074/jbc.M111883200
- Jung, M.-K., Kim, K. Y., Lee, N.-Y., Kang, Y.-S., Hwang, Y. J., Kim, Y., Sung, J.-J., McKee, A., Kowall, N., Lee, J. and Ryu, H. (2013) Expression of taurine transporter (TauT) is modulated by heat shock factor 1 (HSF1) in motor neurons of ALS. Mol. Neurobiol. 47, 699-710. https://doi.org/10.1007/s12035-012-8371-9
- Kang, Y. S., Ohtsuki, S., Takanaga, H., Tomi, M., Hosoya, K. and Terasaki, T. (2002) Regulation of taurine transport at the blood-brain barrier by tumor necrosis factor-α, taurine and hypertonicity. J. Neurochem. 83, 1188-1195. https://doi.org/10.1046/j.1471-4159.2002.01223.x
- Kuhlmann, C. R. W., Gerigk, M., Bender, B., Closhen, D., Lessmann, V. and Luhmann, H. J. (2008) Fluvastatin prevents glutamate-induced blood-brain-barrier disruption in vitro. Life Sci. 82, 1281-1287. https://doi.org/10.1016/j.lfs.2008.04.017
- Latif, S. and Kang, Y.-S. (2022) Protective effects of choline against inflammatory cytokines and characterization of transport in motor neuron-like cell lines (NSC-34). Pharmaceutics 14, 2374. https://doi.org/10.3390/pharmaceutics14112374
- Latif, S. and Kang, Y.-S. (2021) Change in cationic amino acid transport system and effect of lysine pretreatment on inflammatory state in amyotrophic lateral sclerosis cell model. Biomol. Ther. (Seoul) 29, 498-505. https://doi.org/10.4062/biomolther.2021.037
- Lee, J., Hyeon, S. J., Im, H., Ryu, H., Kim, Y. and Ryu, H. (2016) Astrocytes and microglia as non-cell autonomous players in the pathogenesis of ALS. Exp. Neurobiol. 25, 233-240. https://doi.org/10.5607/en.2016.25.5.233
- Lee, J., Ryu, H. and Kowall, N. W. (2009a) Differential regulation of neuronal and inducible nitric oxide synthase (NOS) in the spinal cord of mutant SOD1 (G93A) ALS mice. Biochem. Biophys. Res. Commun. 387, 202-206. https://doi.org/10.1016/j.bbrc.2009.07.007
- Lee, J., Ryu, H. and Kowall, N. W. (2009b) Motor neuronal protection by L-arginine prolongs survival of mutant SOD1 (G93A) ALS mice. Biochem. Biophys. Res. Commun. 384, 524-529. https://doi.org/10.1016/j.bbrc.2009.05.015
- Lee, K.-E. and Kang, Y.-S. (2017) Characteristics of L-citrulline transport through blood-brain barrier in the brain capillary endothelial cell line (TR-BBB cells). J. Biomed. Sci. 24, 28. https://doi.org/10.1186/s12929-017-0336-x
- Lee, N. Y. and Kang, Y. S. (2015) The changes by hypoxia inducible factor- 1alpha (HIF-1α) on taurine uptake in brain capillary endothelial cells at high glucose conditions. Adv. Exp. Med. Biol. 803, 501-511. https://doi.org/10.1007/978-3-319-15126-7_40
- Lee, N. Y. and Kang, Y. S. (2016) In vivo and in vitro evidence for brain uptake of 4-phenylbutyrate by the monocarboxylate transporter 1 (MCT1). Pharm. Res. 33, 1711-1722. https://doi.org/10.1007/s11095-016-1912-6
- Lee, N. Y., Kim, Y., Ryu, H. and Kang, Y. S. (2017) The alteration of serine transporter activity in a cell line model of amyotrophic lateral sclerosis (ALS). Biochem. Biophys. Res. Commun. 483, 135-141. https://doi.org/10.1016/j.bbrc.2016.12.178
- Li, C., He, A., Guo, Y., Yang, X., Luo, M., Cheng, Z., Huang, L., Xia, Y. and Luo, S. (2021) Hypertonic stress modulates eNOS function through O-GlcNAc modification at Thr-866. Sci. Rep. 11, 11272. https://doi.org/10.1038/s41598-021-90321-4
- Lively, S. and Schlichter, L. C. (2018) Microglia responses to pro-inflammatory stimuli (LPS, IFNγ+TNFα) and reprogramming by resolving cytokines (IL-4, IL-10). Front. Cell. Neurosc. 12, 215. https://doi.org/10.3389/fncel.2018.00215
- Luiking, Y. C., Engelen, M. P. K. J. and Deutz, N. E. P. (2010) Regulation of nitric oxide production in health and disease. Curr. Opin. Clin. Nutr. Metab. Care 13, 97-104. https://doi.org/10.1097/MCO.0b013e328332f99d
- McManus, M. L., Churchwell, K. B. and Strange, K. (1995) Regulation of cell volume in health and disease. N. Engl. J. Med. 333, 1260-1267. https://doi.org/10.1056/NEJM199511093331906
- Moinard, C., MacCario, J., Walrand, S., Lasserre, V., Marc, J., Boirie, Y. and Cynober, L. (2016) Arginine behaviour after arginine or citrulline administration in older subjects. Br. J. Nutr. 115, 399-404. https://doi.org/10.1017/S0007114515004638
- Nomura, E., Ohta, Y., Tadokoro, K., Shang, J., Feng, T., Liu, X., Shi, X., Matsumoto, N., Sasaki, R., Tsunoda, K., Sato, K., Takemoto, M., Hishikawa, N., Yamashita, T., Kuchimaru, T., Kizaka-Kondoh, S. and Abe, K. (2019) Imaging hypoxic stress and the treatment of amyotrophic lateral sclerosis with dimethyloxalylglycine in a mice model. Neuroscience 415, 31-43. https://doi.org/10.1016/j.neuroscience.2019.06.025
- Pollari, E., Goldsteins, G., Bart, G., Koistinaho, J. and Giniatullin, R. (2014) The role of oxidative stress in degeneration of the neuromuscular junction in amyotrophic lateral sclerosis. Front. Cell. Neurosci. 8, 131.
- Renton, A. E., Chio, A. and Traynor, B. J. (2014) State of play in amyotrophic lateral sclerosis genetics. Nat. Neurosci. 17, 17-23. https://doi.org/10.1038/nn.3584
- Ryu, H., Lee, J., Hagerty, S. W., Byoung, Y. S., McAlpin, S. E., Cormier, K. A., Smith, K. M. and Ferrante, R. J. (2006) ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Huntington's disease. Proc. Natl. Acad. Sci. U. S. A. 103, 19176-19181. https://doi.org/10.1073/pnas.0606373103
- Sasabe, J., Chiba, T., Yamada, M., Okamoto, K., Nishimoto, I., Matsuoka, M. and Aiso, S. (2007) D-serine is a key determinant of glutamate toxicity in amyotrophic lateral sclerosis. EMBO J. 26, 4149-4159. https://doi.org/10.1038/sj.emboj.7601840
- Satsu, H., Miyamoto, Y. and Shimizu, M. (1999) Hypertonicity stimulates taurine uptake and transporter gene expression in Caco-2 cells. Biochim. Biophys. Acta Biomembr. 1419, 89-96. https://doi.org/10.1016/S0005-2736(99)00058-9
- Sharp, C. D., Hines, I., Houghton, J., Warren, A., Jackson, T. H., IV, Jawahar, A., Nanda, A., Elrod, J. W., Long, A., Chi, A., Minagar, A. and Alexander, J. S. (2003) Glutamate causes a loss in human cerebral endothelial barrier integrity through activation of NMDA receptor. Am. J. Physiol. Heart Circ. Physiol. 285, H2592-H2598. https://doi.org/10.1152/ajpheart.00520.2003
- Yabuki, Y., Shioda, N., Yamamoto, Y., Shigano, M., Kumagai, K., Morita, M. and Fukunaga, K. (2013) Oral L-citrulline administration improves memory deficits following transient brain ischemia through cerebrovascular protection. Brain Res. 1520, 157-167. https://doi.org/10.1016/j.brainres.2013.05.011
- Zhang, X., Chen, S., Li, L., Wang, Q. and Le, W. (2008) Folic acid protects motor neurons against the increased homocysteine, inflammation and apoptosis in SOD1G93A transgenic mice. Neuropharmacology 54, 1112-1119. https://doi.org/10.1016/j.neuropharm.2008.02.020