Acknowledgement
This research was supported by the Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (0720213063) and by the MSIT (2021R1A4A2001251).
References
- Bolger, A. M., Lohse, M. and Usadel, B. (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120. https://doi.org/10.1093/bioinformatics/btu170
- Bravo-Cordero, J. J., Hodgson, L. and Condeelis, J. (2012) Directed cell invasion and migration during metastasis. Curr. Opin. Cell Biol. 24, 277-283. https://doi.org/10.1016/j.ceb.2011.12.004
- Chou, T.-C. (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 70, 440-446. https://doi.org/10.1158/0008-5472.CAN-09-1947
- Gao, Y., Li, G., Sun, L., He, Y., Li, X., Sun, Z., Wang, J., Jiang, Y. and Shi, J. (2015) ACTN4 and the pathways associated with cell motility and adhesion contribute to the process of lung cancer metastasis to the brain. BMC Cancer 15, 277.
- Honda, K. (2015) The biological role of actinin-4 (ACTN4) in malignant phenotypes of cancer. Cell Biosci. 5, 41.
- Hu, G., Li, F., Ouyang, K., Xie, F., Tang, X., Wang, K., Han, S., Jiang, Z., Zhu, M., Wen, D., Qin, X. and Zhang, L. (2012) Intrinsic gemcitabine resistance in a novel pancreatic cancer cell line is associated with cancer stem cell-like phenotype. Int. J. Oncol. 40, 798-806.
- Huang, Q., Li, X., Huang, Z., Yu, F., Wang, X., Wang, S., He, Z. and Lin, J. (2020) ACTN4 promotes the proliferation, migration, metastasis of osteosarcoma and enhances its invasive ability through the NF-κB pathway. Pathol. Oncol. Res. 26, 893-904. https://doi.org/10.1007/s12253-019-00637-w
- Kim, J., Koo, B.-K. and Knoblich, J. A. (2020) Human organoids: model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. 21, 571-584. https://doi.org/10.1038/s41580-020-0259-3
- Koltai, T., Reshkin, S. J., Carvalho, T. M., Di Molfetta, D., Greco, M. R., Alfarouk, K. O. and Cardon, R. A. (2022) Resistance to gemcitabine in pancreatic ductal adenocarcinoma: a physiopathologic and pharmacologic review. Cancers 14, 2486.
- Kondo, J. and Inoue, M. (2019) Application of cancer organoid model for drug screening and personalized therapy. Cells 8, 470.
- Kyaw, K. Z., Byun, W. S., Shin, Y.-H., Huynh, T.-H., Lee, J. Y., Bae, E. S., Park, H. J., Oh, D.-C. and Lee, S. K. (2022) Antitumor activity of piceamycin by upregulation of N-myc downstream-regulated gene 1 in human colorectal cancer cells. J. Nat. Prod. 85, 2817-2827. https://doi.org/10.1021/acs.jnatprod.2c00832
- Lee, J. H., Kim, H., Lee, S. H., Ku, J.-L., Chun, J. W., Seo, H. Y., Kim, S. C., Paik, W. H., Ryu, J. K., Lee, S. K., Lowy, A. M. and Kim, Y. T. (2022) Establishment of patient-derived pancreatic cancer organoids from endoscopic ultrasound-guided fine-needle aspiration biopsies. Gut Liver 16, 625-636. https://doi.org/10.5009/gnl210166
- Lichota, A. and Gwozdzinski, K. (2018) Anticancer activity of natural compounds from plant and marine environment. Int. J. Mol. Sci. 19, 3533.
- Liu, L., Yu, L., Li, Z., Li, W. and Huang, W. (2021) Patient-derived organoid (PDO) platforms to facilitate clinical decision making. J. Transl. Med. 19, 40.
- Lomert, E., Turoverova, L., Kriger, D., Aksenov, N. D., Nikotina, A. D., Petukhov, A., Mittenberga, A. G., Panyusheva, N. V., Khotina, M., Volkovc, K., Barleva, N. A. and Tentler, D. (2018) Co-expression of RelA/p65 and ACTN4 induces apoptosis in non-small lung carcinoma cells. Cell Cycle 17, 616-626. https://doi.org/10.1080/15384101.2017.1417709
- Love, M. I., Huber, W. and Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550.
- Nagle, P. W., Plukker, J. T. M., Muijs, C. T., van Luijk, P. and Coppes, R. P. (2018) Patient-derived tumor organoids for prediction of cancer treatment response. Semin. Cancer Biol. 53, 258-264. https://doi.org/10.1016/j.semcancer.2018.06.005
- Park, W., Chawla, A. and O'Reilly, E. M. (2021) Pancreatic cancer: a review. JAMA 326, 851-862. https://doi.org/10.1001/jama.2021.13027
- Peng, W., Tong, C., Li, L., Huang, C., Ran, Y., Chen, X., Bai, Y., Liu, Y., Zhao, J., Tan, B., Luo, X., Wang, H., Wen, L., Zhang, C., Zhang, H., Ding, Y., Qi, H. and Baker, P. N. (2019) Trophoblastic proliferation and invasion regulated by ACTN4 is impaired in early onset preeclampsia. FASEB J. 33, 6327-6338. https://doi.org/10.1096/fj.201802058RR
- Pereira, N. P. and Correa, J. R. (2018) Pancreatic cancer: treatment approaches and trends. J. Cancer Metastatis Treat. 4, 30.
- Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. and Salzberg, S. L. (2016) Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 11, 1650-1667. https://doi.org/10.1038/nprot.2016.095
- Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T.-C., Mendell, J. T. and Salzbereg, S. L. (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290-295. https://doi.org/10.1038/nbt.3122
- Schulz, D., Nachtigall, J., Riedlinger, J., Schneider, K., Poralla, K., Imhoff, J. F., Beil, W., Nicholson, G., Fiedler, H. P. and Sussmuth, R. D. (2009) Piceamycin and its N-acetylcysteine adduct is produced by Streptomyces sp. GB 4-2. J. Antibiot. 62, 513-518. https://doi.org/10.1038/ja.2009.64
- Shin, Y.-H., Kang, S., Byun, W. S., Jeon, C.-W., Chung, B., Beom, J. Y., Hong, S., Lee, J., Shin, J., Kwak, Y. S., Lee, S. K., Oh, K. B., Yoon, Y. J. and Oh, D. C. (2020) Absolute configuration and antibiotic activity of piceamycin. J. Nat. Prod. 83, 277-285. https://doi.org/10.1021/acs.jnatprod.9b00678
- Siegel, R., Miller, K., Fuchs, H. and Jemal, A. (2021) Cancer statistics. CA Cancer J. Clin. 71, 7-33. https://doi.org/10.3322/caac.21654
- Tentler, D., Lomert, E., Novitskaya, K. and Barlev, N. (2019) Role of ACTN4 in tumorigenesis, metastasis, and EMT. Cells 8, 1427.
- Tozuka, T., Noro, R., Seike, M. and Honda, K. (2022) Benefits from adjuvant chemotherapy in patients with resected non-small cell lung cancer: possibility of stratification by gene amplification of ACTN4 according to evaluation of metastatic ability. Cancers 14, 4363.
- Vivarelli, S., Candido, S., Caruso, G., Falzone, L. and Libra, M. (2020) Patient-derived tumor organoids for drug repositioning in cancer care: a promising approach in the era of tailored treatment. Cancers 12, 3636.
- Wang, N., Wang, Q., Tang, H., Zhang, F., Zheng, Y., Wang, S., Zhang, J., Wang, Z. and Xie, X. (2017) Direct inhibition of ACTN4 by ellagic acid limits breast cancer metastasis via regulation of β-catenin stabilization in cancer stem cells. J. Exp. Clin. Cancer Res. 36, 172.
- Watanabe, T., Ueno, H., Watabe, Y., Hiraoka, N., Morizane, C., Itami, J., Okusaka, T., Miura, N., Kakizaki, T., Kakuya, T., Kamita, M., Tsuchida, A., Nagakawa, Y., Wilber, H., Yamada, T. and Honda, K. (2015) ACTN4 copy number increase as a predictive biomarker for chemoradiotherapy of locally advanced pancreatic cancer. Br. J. Cancer 112, 704-713. https://doi.org/10.1038/bjc.2014.623
- Wimalagunasekara, S. S., Fernando, P. C. and Tirimanne, S. (2022) Protein-protein interaction (PPI) network analysis reveals important hub proteins and sub-network modules for root development in rice (Oryza sativa). bioRxiv doi: 10.1101/2022.06.06.494990 [Preprint].
- Xu, C., Yu, Y. and Ding, F. (2018) Microarray analysis of circular RNA expression profiles associated with gemcitabine resistance in pancreatic cancer cells. Oncol. Rep. 40, 395-404. https://doi.org/10.3892/or.2018.6450
- Yu, X. and Sun, D. (2013) Macrocyclic drugs and synthetic methodologies toward macrocycles. Molecules 18, 6230-6268. https://doi.org/10.3390/molecules18066230
- Zhao, J., Peng, W., Ran, Y., Ge, H., Zhang, C., Zou, H., Ding, Y. and Qi, H. (2019) Dysregulated expression of ACTN4 contributes to endothelial cell injury via the activation of the p38-MAPK/p53 apoptosis pathway in preeclampsia. J. Physiol. Biochem. 75, 475-487. https://doi.org/10.1007/s13105-019-00700-9
- Zhao, Z. and Liu, W. (2020) Pancreatic cancer: a review of risk factors, diagnosis, and treatment. Technol. Cancer Res. Treat. 19, 1533033820962117.