DOI QR코드

DOI QR Code

Antiproliferative Activity of Piceamycin by Regulating Alpha-Actinin-4 in Gemcitabine-Resistant Pancreatic Cancer Cells

  • Jee-Hyung Lee (Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, College of Medicine, Seoul National University) ;
  • Jin Ho Choi (Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Kyung-Min Lee (Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, College of Medicine, Seoul National University) ;
  • Min Woo Lee (Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, College of Medicine, Seoul National University) ;
  • Ja-Lok Ku (Department of Biomedical Sciences, Korean Cell Line Bank, Laboratory of Cell Biology and Cancer Research Institute, College of Medicine, Seoul National University) ;
  • Dong-Chan Oh (Natural Products Research Institute, College of Pharmacy, Seoul National University) ;
  • Yern-Hyerk Shin (Natural Products Research Institute, College of Pharmacy, Seoul National University) ;
  • Dae Hyun Kim (Dxome Co. Ltd.) ;
  • In Rae Cho (Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, College of Medicine, Seoul National University) ;
  • Woo Hyun Paik (Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, College of Medicine, Seoul National University) ;
  • Ji Kon Ryu (Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, College of Medicine, Seoul National University) ;
  • Yong-Tae Kim (Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, College of Medicine, Seoul National University) ;
  • Sang Hyub Lee (Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, College of Medicine, Seoul National University) ;
  • Sang Kook Lee (Natural Products Research Institute, College of Pharmacy, Seoul National University)
  • Received : 2023.06.07
  • Accepted : 2023.07.05
  • Published : 2024.01.01

Abstract

Although gemcitabine-based regimens are widely used as an effective treatment for pancreatic cancer, acquired resistance to gemcitabine has become an increasingly common problem. Therefore, a novel therapeutic strategy to treat gemcitabine-resistant pancreatic cancer is urgently required. Piceamycin has been reported to exhibit antiproliferative activity against various cancer cells; however, its underlying molecular mechanism for anticancer activity in pancreatic cancer cells remains unexplored. Therefore, the present study evaluated the antiproliferation activity of piceamycin in a gemcitabine-resistant pancreatic cancer cell line and patient-derived pancreatic cancer organoids. Piceamycin effectively inhibited the proliferation and suppressed the expression of alpha-actinin-4, a gene that plays a pivotal role in tumorigenesis and metastasis of various cancers, in gemcitabine-resistant cells. Long-term exposure to piceamycin induced cell cycle arrest at the G0/G1 phase and caused apoptosis. Piceamycin also inhibited the invasion and migration of gemcitabine-resistant cells by modulating focal adhesion and epithelial-mesenchymal transition biomarkers. Moreover, the combination of piceamycin and gemcitabine exhibited a synergistic antiproliferative activity in gemcitabine-resistant cells. Piceamycin also effectively inhibited patient-derived pancreatic cancer organoid growth and induced apoptosis in the organoids. Taken together, these findings demonstrate that piceamycin may be an effective agent for overcoming gemcitabine resistance in pancreatic cancer.

Keywords

Acknowledgement

This research was supported by the Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (0720213063) and by the MSIT (2021R1A4A2001251).

References

  1. Bolger, A. M., Lohse, M. and Usadel, B. (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120. https://doi.org/10.1093/bioinformatics/btu170
  2. Bravo-Cordero, J. J., Hodgson, L. and Condeelis, J. (2012) Directed cell invasion and migration during metastasis. Curr. Opin. Cell Biol. 24, 277-283.  https://doi.org/10.1016/j.ceb.2011.12.004
  3. Chou, T.-C. (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 70, 440-446.  https://doi.org/10.1158/0008-5472.CAN-09-1947
  4. Gao, Y., Li, G., Sun, L., He, Y., Li, X., Sun, Z., Wang, J., Jiang, Y. and Shi, J. (2015) ACTN4 and the pathways associated with cell motility and adhesion contribute to the process of lung cancer metastasis to the brain. BMC Cancer 15, 277. 
  5. Honda, K. (2015) The biological role of actinin-4 (ACTN4) in malignant phenotypes of cancer. Cell Biosci. 5, 41. 
  6. Hu, G., Li, F., Ouyang, K., Xie, F., Tang, X., Wang, K., Han, S., Jiang, Z., Zhu, M., Wen, D., Qin, X. and Zhang, L. (2012) Intrinsic gemcitabine resistance in a novel pancreatic cancer cell line is associated with cancer stem cell-like phenotype. Int. J. Oncol. 40, 798-806. 
  7. Huang, Q., Li, X., Huang, Z., Yu, F., Wang, X., Wang, S., He, Z. and Lin, J. (2020) ACTN4 promotes the proliferation, migration, metastasis of osteosarcoma and enhances its invasive ability through the NF-κB pathway. Pathol. Oncol. Res. 26, 893-904.  https://doi.org/10.1007/s12253-019-00637-w
  8. Kim, J., Koo, B.-K. and Knoblich, J. A. (2020) Human organoids: model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. 21, 571-584.  https://doi.org/10.1038/s41580-020-0259-3
  9. Koltai, T., Reshkin, S. J., Carvalho, T. M., Di Molfetta, D., Greco, M. R., Alfarouk, K. O. and Cardon, R. A. (2022) Resistance to gemcitabine in pancreatic ductal adenocarcinoma: a physiopathologic and pharmacologic review. Cancers 14, 2486. 
  10. Kondo, J. and Inoue, M. (2019) Application of cancer organoid model for drug screening and personalized therapy. Cells 8, 470. 
  11. Kyaw, K. Z., Byun, W. S., Shin, Y.-H., Huynh, T.-H., Lee, J. Y., Bae, E. S., Park, H. J., Oh, D.-C. and Lee, S. K. (2022) Antitumor activity of piceamycin by upregulation of N-myc downstream-regulated gene 1 in human colorectal cancer cells. J. Nat. Prod. 85, 2817-2827.  https://doi.org/10.1021/acs.jnatprod.2c00832
  12. Lee, J. H., Kim, H., Lee, S. H., Ku, J.-L., Chun, J. W., Seo, H. Y., Kim, S. C., Paik, W. H., Ryu, J. K., Lee, S. K., Lowy, A. M. and Kim, Y. T. (2022) Establishment of patient-derived pancreatic cancer organoids from endoscopic ultrasound-guided fine-needle aspiration biopsies. Gut Liver 16, 625-636.  https://doi.org/10.5009/gnl210166
  13. Lichota, A. and Gwozdzinski, K. (2018) Anticancer activity of natural compounds from plant and marine environment. Int. J. Mol. Sci. 19, 3533. 
  14. Liu, L., Yu, L., Li, Z., Li, W. and Huang, W. (2021) Patient-derived organoid (PDO) platforms to facilitate clinical decision making. J. Transl. Med. 19, 40. 
  15. Lomert, E., Turoverova, L., Kriger, D., Aksenov, N. D., Nikotina, A. D., Petukhov, A., Mittenberga, A. G., Panyusheva, N. V., Khotina, M., Volkovc, K., Barleva, N. A. and Tentler, D. (2018) Co-expression of RelA/p65 and ACTN4 induces apoptosis in non-small lung carcinoma cells. Cell Cycle 17, 616-626.  https://doi.org/10.1080/15384101.2017.1417709
  16. Love, M. I., Huber, W. and Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. 
  17. Nagle, P. W., Plukker, J. T. M., Muijs, C. T., van Luijk, P. and Coppes, R. P. (2018) Patient-derived tumor organoids for prediction of cancer treatment response. Semin. Cancer Biol. 53, 258-264.  https://doi.org/10.1016/j.semcancer.2018.06.005
  18. Park, W., Chawla, A. and O'Reilly, E. M. (2021) Pancreatic cancer: a review. JAMA 326, 851-862.  https://doi.org/10.1001/jama.2021.13027
  19. Peng, W., Tong, C., Li, L., Huang, C., Ran, Y., Chen, X., Bai, Y., Liu, Y., Zhao, J., Tan, B., Luo, X., Wang, H., Wen, L., Zhang, C., Zhang, H., Ding, Y., Qi, H. and Baker, P. N. (2019) Trophoblastic proliferation and invasion regulated by ACTN4 is impaired in early onset preeclampsia. FASEB J. 33, 6327-6338.  https://doi.org/10.1096/fj.201802058RR
  20. Pereira, N. P. and Correa, J. R. (2018) Pancreatic cancer: treatment approaches and trends. J. Cancer Metastatis Treat. 4, 30. 
  21. Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. and Salzberg, S. L. (2016) Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 11, 1650-1667.  https://doi.org/10.1038/nprot.2016.095
  22. Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T.-C., Mendell, J. T. and Salzbereg, S. L. (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290-295.  https://doi.org/10.1038/nbt.3122
  23. Schulz, D., Nachtigall, J., Riedlinger, J., Schneider, K., Poralla, K., Imhoff, J. F., Beil, W., Nicholson, G., Fiedler, H. P. and Sussmuth, R. D. (2009) Piceamycin and its N-acetylcysteine adduct is produced by Streptomyces sp. GB 4-2. J. Antibiot. 62, 513-518.  https://doi.org/10.1038/ja.2009.64
  24. Shin, Y.-H., Kang, S., Byun, W. S., Jeon, C.-W., Chung, B., Beom, J. Y., Hong, S., Lee, J., Shin, J., Kwak, Y. S., Lee, S. K., Oh, K. B., Yoon, Y. J. and Oh, D. C. (2020) Absolute configuration and antibiotic activity of piceamycin. J. Nat. Prod. 83, 277-285.  https://doi.org/10.1021/acs.jnatprod.9b00678
  25. Siegel, R., Miller, K., Fuchs, H. and Jemal, A. (2021) Cancer statistics. CA Cancer J. Clin. 71, 7-33.  https://doi.org/10.3322/caac.21654
  26. Tentler, D., Lomert, E., Novitskaya, K. and Barlev, N. (2019) Role of ACTN4 in tumorigenesis, metastasis, and EMT. Cells 8, 1427. 
  27. Tozuka, T., Noro, R., Seike, M. and Honda, K. (2022) Benefits from adjuvant chemotherapy in patients with resected non-small cell lung cancer: possibility of stratification by gene amplification of ACTN4 according to evaluation of metastatic ability. Cancers 14, 4363. 
  28. Vivarelli, S., Candido, S., Caruso, G., Falzone, L. and Libra, M. (2020) Patient-derived tumor organoids for drug repositioning in cancer care: a promising approach in the era of tailored treatment. Cancers 12, 3636. 
  29. Wang, N., Wang, Q., Tang, H., Zhang, F., Zheng, Y., Wang, S., Zhang, J., Wang, Z. and Xie, X. (2017) Direct inhibition of ACTN4 by ellagic acid limits breast cancer metastasis via regulation of β-catenin stabilization in cancer stem cells. J. Exp. Clin. Cancer Res. 36, 172. 
  30. Watanabe, T., Ueno, H., Watabe, Y., Hiraoka, N., Morizane, C., Itami, J., Okusaka, T., Miura, N., Kakizaki, T., Kakuya, T., Kamita, M., Tsuchida, A., Nagakawa, Y., Wilber, H., Yamada, T. and Honda, K. (2015) ACTN4 copy number increase as a predictive biomarker for chemoradiotherapy of locally advanced pancreatic cancer. Br. J. Cancer 112, 704-713.  https://doi.org/10.1038/bjc.2014.623
  31. Wimalagunasekara, S. S., Fernando, P. C. and Tirimanne, S. (2022) Protein-protein interaction (PPI) network analysis reveals important hub proteins and sub-network modules for root development in rice (Oryza sativa). bioRxiv doi: 10.1101/2022.06.06.494990 [Preprint]. 
  32. Xu, C., Yu, Y. and Ding, F. (2018) Microarray analysis of circular RNA expression profiles associated with gemcitabine resistance in pancreatic cancer cells. Oncol. Rep. 40, 395-404.  https://doi.org/10.3892/or.2018.6450
  33. Yu, X. and Sun, D. (2013) Macrocyclic drugs and synthetic methodologies toward macrocycles. Molecules 18, 6230-6268.  https://doi.org/10.3390/molecules18066230
  34. Zhao, J., Peng, W., Ran, Y., Ge, H., Zhang, C., Zou, H., Ding, Y. and Qi, H. (2019) Dysregulated expression of ACTN4 contributes to endothelial cell injury via the activation of the p38-MAPK/p53 apoptosis pathway in preeclampsia. J. Physiol. Biochem. 75, 475-487.  https://doi.org/10.1007/s13105-019-00700-9
  35. Zhao, Z. and Liu, W. (2020) Pancreatic cancer: a review of risk factors, diagnosis, and treatment. Technol. Cancer Res. Treat. 19, 1533033820962117.