DOI QR코드

DOI QR Code

Licochalcone C Inhibits the Growth of Human Colorectal Cancer HCT116 Cells Resistant to Oxaliplatin

  • Seung-On Lee (Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University) ;
  • Sang Hoon Joo (College of Pharmacy, Daegu Catholic University) ;
  • Jin-Young Lee (Department of Biological Sciences, Keimyung University) ;
  • Ah-Won Kwak (Biosystem Research Group, Department of Predictive Toxicology, Korea Institute of Toxicology) ;
  • Ki-Taek Kim (Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University) ;
  • Seung-Sik Cho (Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University) ;
  • Goo Yoon (Department of Pharmacy, College of Pharmacy, Mokpo National University) ;
  • Yung Hyun Choi (Department of Biochemistry, College of Korean Medicine, Dong-Eui University) ;
  • Jin Woo Park (Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University) ;
  • Jung-Hyun Shim (Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University)
  • Received : 2023.09.19
  • Accepted : 2023.10.19
  • Published : 2024.01.01

Abstract

Licochalcone C (LCC; PubChem CID:9840805), a chalcone compound originating from the root of Glycyrrhiza inflata, has shown anticancer activity against skin cancer, esophageal squamous cell carcinoma, and oral squamous cell carcinoma. However, the therapeutic potential of LCC in treating colorectal cancer (CRC) and its underlying molecular mechanisms remain unclear. Chemotherapy for CRC is challenging because of the development of drug resistance. In this study, we examined the antiproliferative activity of LCC in human colorectal carcinoma HCT116 cells, oxaliplatin (Ox) sensitive and Ox-resistant HCT116 cells (HCT116-OxR). LCC significantly and selectively inhibited the growth of HCT116 and HCT116-OxR cells. An in vitro kinase assay showed that LCC inhibited the kinase activities of EGFR and AKT. Molecular docking simulations using AutoDock Vina indicated that LCC could be in ATP-binding pockets. Decreased phosphorylation of EGFR and AKT was observed in the LCC-treated cells. In addition, LCC induced cell cycle arrest by modulating the expression of cell cycle regulators p21, p27, cyclin B1, and cdc2. LCC treatment induced ROS generation in CRC cells, and the ROS induction was accompanied by the phosphorylation of JNK and p38 kinases. Moreover, LCC dysregulated mitochondrial membrane potential (MMP), and the disruption of MMP resulted in the release of cytochrome c into the cytoplasm and activation of caspases to execute apoptosis. Overall, LCC showed anticancer activity against both Ox-sensitive and Ox-resistant CRC cells by targeting EGFR and AKT, inducing ROS generation and disrupting MMP. Thus, LCC may be potential therapeutic agents for the treatment of Ox-resistant CRC cells.

Keywords

Acknowledgement

This study was funded by the Basic Science Research Program of the National Research Foundation of Korea (NRF) (No. 2019R1A2C1005899, 2021R1I1A3058531), and an NRF grant from the Korean Government (MSIT) (No. 2022R1A5A8033794).

References

  1. Balin-Gauthier, D., Delord, J. P., Rochaix, P., Mallard, V., Thomas, F., Hennebelle, I., Bugat, R., Canal, P. and Allal, C. (2006) In vivo and in vitro antitumor activity of oxaliplatin in combination with cetuximab in human colorectal tumor cell lines expressing different level of EGFR. Cancer Chemother. Pharmacol. 57, 709-718. https://doi.org/10.1007/s00280-005-0123-3
  2. Bose, D., Zimmerman, L., Pierobon, M., Petricoin, E., Tozzi, F., Parikh, A., Fan, F., Dallas, N., Xia, L. and Gaur, P. (2011) Chemoresistant colorectal cancer cells and cancer stem cells mediate growth and survival of bystander cells. Br. J. Cancer 105, 1759-1767. https://doi.org/10.1038/bjc.2011.449
  3. Chiu, Y.-J., Lee, C.-M., Lin, T.-H., Lin, H.-Y., Lee, S.-Y., Mesri, M., Chang, K.-H., Lin, J.-Y., Lee-Chen, G.-J. and Chen, C.-M. (2018) Chinese herbal medicine Glycyrrhiza inflata reduces Aβ aggregation and exerts neuroprotection through anti-oxidation and antiinflammation. Am. J. Chin. Med. 46, 1535-1559. https://doi.org/10.1142/S0192415X18500799
  4. Chun, K. S. and Joo, S. H. (2022) Modulation of reactive oxygen species to overcome 5-fluorouracil resistance. Biomol. Ther. (Seoul) 30, 479-489. https://doi.org/10.4062/biomolther.2022.017
  5. Dao, T. T., Nguyen, P. H., Lee, H. S., Kim, E., Park, J., Lim, S. I. and Oh, W. K. (2011) Chalcones as novel influenza A (H1N1) neuraminidase inhibitors from Glycyrrhiza inflata. Bioorg. Med. Chem. Lett. 21, 294-298. https://doi.org/10.1016/j.bmcl.2010.11.016
  6. De Mattia, E., Cecchin, E. and Toffoli, G. (2015) Pharmacogenomics of intrinsic and acquired pharmacoresistance in colorectal cancer: toward targeted personalized therapy. Drug Resist. Updat. 20, 39-70. https://doi.org/10.1016/j.drup.2015.05.003
  7. Efferth, T. (2012) Signal transduction pathways of the epidermal growth factor receptor in colorectal cancer and their inhibition by small molecules. Curr. Med. Chem. 19, 5735-5744. https://doi.org/10.2174/092986712803988884
  8. Ekblad, L. and Johnsson, A. (2012) Cetuximab sensitivity associated with oxaliplatin resistance in colorectal cancer. Anticancer Res. 32, 783-786.
  9. Folprecht, G., Martinelli, E., Mazard, T., Modest, D. P., Tsuji, A., Esser, R., Cremolini, C. and Falcone, A. (2022) Triplet chemotherapy in combination with anti-EGFR agents for the treatment of metastatic colorectal cancer: current evidence, advances, and future perspectives. Cancer Treat. Rev. 102, 102301. https://doi.org/10.1016/j.ctrv.2021.102301
  10. Franceschelli, S., Pesce, M., Vinciguerra, I., Ferrone, A., Riccioni, G., Patruno, A., Grilli, A., Felaco, M. and Speranza, L. (2011) Licocalchone-C extracted from Glycyrrhiza glabra inhibits lipopolysaccharide-interferon-gamma inflammation by improving antioxidant conditions and regulating inducible nitric oxide synthase expression. Molecules 16, 5720-5734. https://doi.org/10.3390/molecules16075720
  11. Gao, F., Li, M., Yu, X., Liu, W., Zhou, L. and Li, W. (2021) Licochalcone A inhibits EGFR signalling and translationally suppresses survivin expression in human cancer cells. J. Cell. Mol. Med. 25, 813-826. https://doi.org/10.1111/jcmm.16135
  12. Kim, H. S., Oh, H. N., Kwak, A. W., Kim, E., Lee, M. H., Seo, J. H., Cho, S. S., Yoon, G., Chae, J. I. and Shim, J. H. (2021) Deoxypodophyllotoxin inhibits cell growth and induces apoptosis by blocking EGFR and MET in gefitinib-resistant non-small cell lung cancer. J. Microbiol. Biotechnol. 31, 559-569. https://doi.org/10.4014/jmb.2101.01029
  13. Koveitypour, Z., Panahi, F., Vakilian, M., Peymani, M., Seyed Forootan, F., Nasr Esfahani, M. H. and Ghaedi, K. (2019) Signaling pathways involved in colorectal cancer progression. Cell Biosci. 9, 97. https://doi.org/10.1186/s13578-019-0361-4
  14. Kwak, A. W., Choi, J. S., Liu, K., Lee, M. H., Jeon, Y. J., Cho, S. S., Yoon, G., Oh, H. N., Chae, J. I. and Shim, J. H. (2020) Licochalcone C induces cell cycle G1 arrest and apoptosis in human esophageal squamous carcinoma cells by activation of the ROS/MAPK signaling pathway. J. Chemother. 32, 132-143. https://doi.org/10.1080/1120009X.2020.1721175
  15. Kwak, A. W., Lee, M. J., Lee, M. H., Yoon, G., Cho, S. S., Chae, J. I. and Shim, J. H. (2021) The 3-deoxysappanchalcone induces ROS-mediated apoptosis and cell cycle arrest via JNK/p38 MAPKs signaling pathway in human esophageal cancer cells. Phytomedicine 86, 153564. https://doi.org/10.1016/j.phymed.2021.153564
  16. Li, H., Wang, C., Lan, L., Wu, W., Evans, I., Ruiz, E. J., Yan, L., Zhou, Z., Oliveira, J. M., Reis, R. L., Hu, Z., Chen, W., Behrens, A., He, Y. and Zhang, C. (2021) PARP1 inhibitor combined with oxaliplatin efficiently suppresses oxaliplatin resistance in gastric cancer-derived organoids via homologous recombination and the base excision repair pathway. Front. Cell Dev. Biol. 9, 719192. https://doi.org/10.3389/fcell.2021.719192
  17. Lin, L., Li, X., Pan, C., Lin, W., Shao, R., Liu, Y., Zhang, J., Luo, Y., Qian, K., Shi, M., Bin, J., Liao, Y. and Liao, W. (2019a) ATXN2L upregulated by epidermal growth factor promotes gastric cancer cell invasiveness and oxaliplatin resistance. Cell Death Dis. 10, 173. https://doi.org/10.1038/s41419-019-1362-2
  18. Lin, R. C., Yang, S. F., Chiou, H. L., Hsieh, S. C., Wen, S. H., Lu, K. H. and Hsieh, Y. H. (2019b) Licochalcone A-induced apoptosis through the activation of p38MAPK pathway mediated mitochondrial pathways of apoptosis in human osteosarcoma cells in vitro and in vivo. Cells 8, 1441. https://doi.org/10.3390/cells8111441
  19. Lo, H. W. and Hung, M. C. (2006) Nuclear EGFR signalling network in cancers: linking EGFR pathway to cell cycle progression, nitric oxide pathway and patient survival. Br. J. Cancer 94, 184-188. https://doi.org/10.1038/sj.bjc.6602941
  20. Malumbres, M. and Barbacid, M. (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer 9, 153-166. https://doi.org/10.1038/nrc2602
  21. Martinez-Balibrea, E., Martinez-Cardus, A., Gines, A., Ruiz de Porras, V., Moutinho, C., Layos, L., Manzano, J. L., Buges, C., Bystrup, S., Esteller, M. and Abad, A. (2015) Tumor-related molecular mechanisms of oxaliplatin resistance. Mol. Cancer Ther. 14, 1767-1776. https://doi.org/10.1158/1535-7163.MCT-14-0636
  22. Moloney, J. N. and Cotter, T. G. (2018) ROS signalling in the biology of cancer. Semin. Cell Dev. Biol. 80, 50-64. https://doi.org/10.1016/j.semcdb.2017.05.023
  23. Morgan, E., Arnold, M., Gini, A., Lorenzoni, V., Cabasag, C. J., Laversanne, M., Vignat, J., Ferlay, J., Murphy, N. and Bray, F. (2023) Global burden of colorectal cancer in 2020 and 2040: incidence and mortality estimates from GLOBOCAN. Gut 72, 338-344. https://doi.org/10.1136/gutjnl-2022-327736
  24. Oh, H. N., Seo, J. H., Lee, M. H., Kim, C., Kim, E., Yoon, G., Cho, S. S., Cho, Y. S., Choi, H. W., Shim, J. H. and Chae, J. I. (2018) Licochalcone C induced apoptosis in human oral squamous cell carcinoma cells by regulation of the JAK2/STAT3 signaling pathway. J. Cell Biochem. 119, 10118-10130. https://doi.org/10.1002/jcb.27349
  25. Purba, E. R., Saita, E. I. and Maruyama, I. N. (2017) Activation of the EGF receptor by ligand binding and oncogenic mutations: the "rotation model". Cells 6, 13. https://doi.org/10.3390/cells6020013
  26. Schneider, C. A., Rasband, W. S. and Eliceiri, K. W. (2012) NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671-675. https://doi.org/10.1038/nmeth.2089
  27. Siegel, R. L., Wagle, N. S., Cercek, A., Smith, R. A. and Jemal, A. (2023) Colorectal cancer statistics, 2023. CA Cancer J. Clin. 73, 233-254. https://doi.org/10.3322/caac.21772
  28. Sreevalsan, S. and Safe, S. (2013) Reactive oxygen species and colorectal cancer. Curr. Colorectal Cancer Rep. 9, 350-357. https://doi.org/10.1007/s11888-013-0190-5
  29. Su, C., Liu, S., Ma, X., Liu, J., Liu, J., Lei, M. and Cao, Y. (2021) The effect and mechanism of erianin on the reversal of oxaliplatin resistance in human colon cancer cells. Cell Biol. Int. 45, 2420-2428. https://doi.org/10.1002/cbin.11684
  30. Suski, J. M., Lebiedzinska, M., Bonora, M., Pinton, P., Duszynski, J. and Wieckowski, M. R. (2012) Relation between mitochondrial membrane potential and ROS formation. Methods Mol. Biol. 810, 183-205. https://doi.org/10.1007/978-1-61779-382-0_12
  31. Tanemoto, R., Okuyama, T., Matsuo, H., Okumura, T., Ikeya, Y. and Nishizawa, M. (2015) The constituents of licorice (Glycyrrhiza uralensis) differentially suppress nitric oxide production in interleukin-1β-treated hepatocytes. Biochem. Biophys. Rep. 2, 153-159.
  32. Tharin, Z., Blanc, J., Alaoui, I. C., Bertaut, A. and Ghiringhelli, F. (2021) Influence of first line chemotherapy strategy depending on primary tumor location in metastatic colorectal cancer. J. Gastrointest. Oncol. 12, 1509-1517. https://doi.org/10.21037/jgo-20-593
  33. Trott, O. and Olson, A. J. (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455-461. https://doi.org/10.1002/jcc.21334
  34. van Dinteren, S., Meijerink, J., Witkamp, R., van Ieperen, B., Vincken, J.-P. and Araya-Cloutier, C. (2022) Valorisation of liquorice (Glycyrrhiza) roots: antimicrobial activity and cytotoxicity of prenylated (iso) flavonoids and chalcones from liquorice spent (G. glabra, G. inflata, and G. uralensis). Food Funct. 13, 12105-12120. https://doi.org/10.1039/D2FO02197H
  35. Wang, P., Yuan, X., Wang, Y., Zhao, H., Sun, X. and Zheng, Q. (2015) Licochalcone C induces apoptosis via B-cell lymphoma 2 family proteins in T24 cells. Mol. Med. Rep. 12, 7623-7628. https://doi.org/10.3892/mmr.2015.4346
  36. Wang, Z., Hu, Y., Xue, Y., Zhu, Z., Wu, Y., Zeng, Q., Wang, Y., Han, H., Zhang, H. and Shen, C. (2022) Mechanism insight on licorice flavonoids release from Carbopol hydrogels: role of "release steric hindrance" and drug solubility in the release medium. Eur. J. Pharm. Sci. 179, 106307. https://doi.org/10.1016/j.ejps.2022.106307
  37. Weng, M. S., Chang, J. H., Hung, W. Y., Yang, Y. C. and Chien, M. H. (2018) The interplay of reactive oxygen species and the epidermal growth factor receptor in tumor progression and drug resistance. J. Exp. Clin. Cancer Res. 37, 61. https://doi.org/10.1186/s13046-018-0728-0
  38. Zhou, M., Liu, L., Wang, W., Han, J., Ren, H., Zheng, Q. and Wang, D. (2015) Role of licochalcone C in cardioprotection against ischemia/reperfusion injury of isolated rat heart via antioxidant, anti-inflammatory, and anti-apoptotic activities. Life Sci. 132, 27-33. https://doi.org/10.1016/j.lfs.2015.04.008