DOI QR코드

DOI QR Code

Effects of Corticosterone on Beta-Amyloid-Induced Cell Death in SH-SY5Y Cells

  • Bo Kyeong Do (College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University) ;
  • Jung-Hee Jang (Department of Pharmacology, School of Medicine, Keimyung University) ;
  • Gyu Hwan Park (College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University)
  • Received : 2023.07.21
  • Accepted : 2023.08.30
  • Published : 2024.01.01

Abstract

Alzheimer's disease (AD) is a neurodegenerative disease characterized by neuronal cell death and memory impairment. Corticosterone (CORT) is a glucocorticoid hormone produced by the hypothalamic-pituitary-adrenal axis in response to a stressful condition. Excessive stress and high CORT levels are known to cause neurotoxicity and aggravate various diseases, whereas mild stress and low CORT levels exert beneficial actions under pathophysiological conditions. However, the effects of mild stress on AD have not been clearly elucidated yet. In this study, the effects of low (3 and 30 nM) CORT concentration on Aβ25-35-induced neurotoxicity in SH-SY5Y cells and underlying molecular mechanisms have been investigated. Cytotoxicity caused by Aβ25-35 was significantly inhibited by the low concentration of CORT treatment in the cells. Furthermore, CORT pretreatment significantly reduced Aβ25-35-mediated pro-apoptotic signals, such as increased Bim/Bcl-2 ratio and caspase-3 cleavage. Moreover, low concentration of CORT treatment inhibited the Aβ25-35-induced cyclooxygenase-2 and pro-inflammatory cytokine expressions, including tumor necrosis factor-α and interleukin-1β. Aβ25-35 resulted in intracellular accumulation of reactive oxygen species and lipid peroxidation, which were effectively reduced by the low CORT concentration. As a molecular mechanism, low CORT concentration activated the nuclear factor-erythroid 2-related factor 2, a redox-sensitive transcription factor mediating cellular defense and upregulating the expression of antioxidant enzymes, such as NAD(P)H:quinone oxidoreductase, glutamylcysteine synthetase, and manganese superoxide dismutase. These findings suggest that low CORT concentration exerts protective actions against Aβ25-35-induced neurotoxicity and might be used to treat and/or prevent AD.

Keywords

Acknowledgement

This research was supported by Kyungpook National University Research Fund, 2021 (Park, G. H.). This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (NRF-2019R1F1A1063005, Jang, J.-H.).

References

  1. Abraham, I., Harkany, T., Horvath, K. and Luiten, P. (2001) Action of glucocorticoids on survival of nerve cells: promoting neurodegeneration or neuroprotection? J. Neuroendocrinol. 13, 749-760. https://doi.org/10.1046/j.1365-2826.2001.00705.x
  2. Armstrong, R. A. (2019) Risk factors for Alzheimer's disease. Folia Neuropathol. 57, 87-105. https://doi.org/10.5114/fn.2019.85929
  3. Alzheimer's Association (2022) 2022 Alzheimer's disease facts and figures. Alzheimers Dement. 18, 18-28.
  4. Babic, R., Babic, M., Rastovic, P., Curlin, M., Simic, J., Mandic, K. and Pavlovic, K. (2020) Resilience in health and illness. Psychiatr. Danub. 32, 226-232.
  5. Bermudez-Rattoni, F. (2007) Neural Plasticity and Memory: from Genes to Brain Imaging. CRC press.
  6. Bodnoff, S. R., Humphreys, A. G., Lehman, J. C., Diamond, D. M., Rose, G. M. and Meaney, M. J. (1995) Enduring effects of chronic corticosterone treatment on spatial learning, synaptic plasticity, and hippocampal neuropathology in young and mid-aged rats. J. Neurosci. 15, 61-69. https://doi.org/10.1523/JNEUROSCI.15-01-00061.1995
  7. Cheignon, C., Tomas, M., Bonnefont-Rousselot, D., Faller, P., Hureau, C. and Collin, F. (2018) Oxidative stress and the amyloid beta peptide in Alzheimer's disease. Redox Biol. 14, 450-464. https://doi.org/10.1016/j.redox.2017.10.014
  8. De Kloet, E. R., Vreugdenhil, E., Oitzl, M. S. and Joëls, M. (1998) Brain corticosteroid receptor balance in health and disease. Endocr. Rev. 19, 269-301.
  9. Demuro, A., Parker, I. and Stutzmann, G. E. (2010) Calcium signaling and amyloid toxicity in Alzheimer disease. J. Biol. Chem. 285, 12463-12468. https://doi.org/10.1074/jbc.R109.080895
  10. Faye, C., McGowan, J. C., Denny, C. A. and David, D. J. (2018) Neurobiological mechanisms of stress resilience and implications for the aged population. Curr. Neuropharmacol. 16, 234-270. https://doi.org/10.2174/1570159X15666170818095105
  11. Green, K. N., Billings, L. M., Roozendaal, B., McGaugh, J. L. and LaFerla, F. M. (2006) Glucocorticoids increase amyloid-β and tau pathology in a mouse model of Alzheimer's disease. J. Neurosci. 26, 9047-9056. https://doi.org/10.1523/JNEUROSCI.2797-06.2006
  12. Ham, S., Lee, Y.-I., Jo, M., Kim, H., Kang, H., Jo, A., Lee, G. H., Mo, Y. J., Park, S. C. and Lee, Y. S. (2017) Hydrocortisone-induced parkin prevents dopaminergic cell death via CREB pathway in Parkinson's disease model. Sci. Rep. 7, 525. https://doi.org/10.1038/s41598-017-00614-w
  13. Heppner, F. L., Ransohoff, R. M. and Becher, B. (2015) Immune attack: the role of inflammation in Alzheimer disease. Nat. Rev. Neurosci. 16, 358-372. https://doi.org/10.1038/nrn3880
  14. Herman, J. P., McKlveen, J. M., Ghosal, S., Kopp, B., Wulsin, A., Makinson, R., Scheimann, J. and Myers, B. (2016) Regulation of the hypothalamic-pituitary-adrenocortical stress response. Compr. Physiol. 6, 603-621.
  15. Justice, N. J. (2018) The relationship between stress and Alzheimer's disease. Neurobiol. Stress 8, 127-133. https://doi.org/10.1016/j.ynstr.2018.04.002
  16. Kim, J. J. and Diamond, D. M. (2002) The stressed hippocampus, synaptic plasticity and lost memories. Nat. Rev. Neurosci. 3, 453-462.
  17. Le Bourg, E. (2016) Life-time protection against severe heat stress by exposing young Drosophila melanogaster flies to a mild cold stress. Biogerontology 17, 409-415. https://doi.org/10.1007/s10522-015-9629-1
  18. Lee, C., Jang, J.-H. and Park, G. H. (2022) Protective role of corticosterone against hydrogen peroxide-induced neuronal cell death in SH-SY5Y cells. Biomol. Ther. (Seoul) 30, 570-575. https://doi.org/10.4062/biomolther.2022.126
  19. Lu, T., Aron, L., Zullo, J., Pan, Y., Kim, H., Chen, Y., Yang, T.-H., Kim, H.-M., Drake, D. and Liu, X. S. (2014) REST and stress resistance in ageing and Alzheimer's disease. Nature 507, 448-454. https://doi.org/10.1038/nature13163
  20. Maglioni, S., Schiavi, A., Runci, A., Shaik, A. and Ventura, N. (2014) Mitochondrial stress extends lifespan in C. elegans through neuronal hormesis. Exp. Gerontol. 56, 89-98. https://doi.org/10.1016/j.exger.2014.03.026
  21. Markesbery, W. R. (1997) Oxidative stress hypothesis in Alzheimer's disease. Free Radic. Biol. Med. 23, 134-147. https://doi.org/10.1016/S0891-5849(96)00629-6
  22. Mattson, M. P. and Cheng, A. (2006) Neurohormetic phytochemicals: low-dose toxins that induce adaptive neuronal stress responses. Trends Neurosci. 29, 632-639. https://doi.org/10.1016/j.tins.2006.09.001
  23. McEwen, B. S. (1999) Stress and hippocampal plasticity. Ann. Rev. Neurosci. 22, 105-122. https://doi.org/10.1146/annurev.neuro.22.1.105
  24. Minter, M. R., Taylor, J. M. and Crack, P. J. (2016) The contribution of neuroinflammation to amyloid toxicity in Alzheimer's disease. J. Neurochem. 136, 457-474. https://doi.org/10.1111/jnc.13411
  25. Morishima-Kawashima, M. and Ihara, Y. (2002) Alzheimer's disease: β-amyloid protein and tau. J. Neurosci. Res. 70, 392-401. https://doi.org/10.1002/jnr.10355
  26. Newell-Price, J., Bertagna, X., Grossman, A. B. and Nieman, L. K. (2006) Cushing's syndrome. Lancet 367, 1605-1617. https://doi.org/10.1016/S0140-6736(06)68699-6
  27. Osorio, C., Probert, T., Jones, E., Young, A. H. and Robbins, I. (2017) Adapting to stress: understanding the neurobiology of resilience. Behav. Med. 43, 307-322. https://doi.org/10.1080/08964289.2016.1170661
  28. Qu, Z., Sun, J., Zhang, W., Yu, J. and Zhuang, C. (2020) Transcription factor NRF2 as a promising therapeutic target for Alzheimer's disease. Free Radic. Biol. Med. 159, 87-102. https://doi.org/10.1016/j.freeradbiomed.2020.06.028
  29. Sadigh-Eteghad, S., Sabermarouf, B., Majdi, A., Talebi, M., Farhoudi, M. and Mahmoudi, J. (2015) Amyloid-beta: a crucial factor in Alzheimer's disease. Med. Princ. Pract. 24, 1-10.
  30. Sandi, C. (2004) Stress, cognitive impairment and cell adhesion molecules. Nat. Rev. Neurosci. 5, 917-930. https://doi.org/10.1038/nrn1555
  31. Tiwari, S., Atluri, V., Kaushik, A., Yndart, A. and Nair, M. (2019) Alzheimer's disease: pathogenesis, diagnostics, and therapeutics. Int. J. Nanomed. 14, 5541-5554. https://doi.org/10.2147/IJN.S200490
  32. Whitwell, J. L. (2010) Progression of atrophy in Alzheimer's disease and related disorders. Neurotox. Res. 18, 339-346. https://doi.org/10.1007/s12640-010-9175-1
  33. Woolley, C. S., Gould, E. and McEwen, B. S. (1990) Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res. 531, 225-231. https://doi.org/10.1016/0006-8993(90)90778-A
  34. Xu, J., Wu, W., Zhang, H. and Yang, L. (2018) Berberine alleviates amyloid β25-35-induced inflammatory response in human neuroblastoma cells by inhibiting proinflammatory factors. Exp. Ther. Med. 16, 4865-4872.
  35. Yaribeygi, H., Panahi, Y., Sahraei, H., Johnston, T. P. and Sahebkar, A. (2017) The impact of stress on body function: a review. EXCLI J. 16, 1057-1072.
  36. Zhang, L., Yu, H., Zhao, X., Lin, X., Tan, C., Cao, G. and Wang, Z. (2010) Neuroprotective effects of salidroside against beta-amyloid-induced oxidative stress in SH-SY5Y human neuroblastoma cells. Neurochem. Int. 57, 547-555. https://doi.org/10.1016/j.neuint.2010.06.021