DOI QR코드

DOI QR Code

Current Development Status of Cytokines for Cancer Immunotherapy

  • Kyoung Song (College of Pharmacy, Duksung Women's University)
  • Received : 2023.11.06
  • Accepted : 2023.12.06
  • Published : 2024.01.01

Abstract

Cytokines influence the overall cancer immune cycle by triggering tumor antigen expression, antigen presenting, immune cell priming and activation, effector immune cell recruitment and infiltration to cancer, and cancer killing in the tumor microenvironment (TME). Therefore, cytokines have been considered potential anti-cancer immunotherapy, and cytokine-based anti-cancer therapies continue to be an active area of research and development in the field of cancer immunotherapy, with ongoing clinical trials exploring new strategies to improve efficacy and safety. In this review, we examine past and present clinical developments for major anticancer cytokines, including interleukins (IL-2, IL-15, IL-12, IL-21), interferons, TGF-beta, and GM-CSF. We identify the current status and changes in the technology platform being applied to cytokine-based immune anti-cancer therapeutics. Through this, we discuss the opportunities and challenges of cytokine-based immune anti-cancer treatments in the current immunotherapy market and suggest development directions to enhance the clinical use of cytokines as immuno-anticancer drugs in the future.

Keywords

Acknowledgement

This research was supported by Duksung Women`s University Research Grants 2021 (3000005804).

References

  1. Antonia, S. J., Borghaei, H., Ramalingam, S. S., Horn, L., De Castro Carpeno, J., Pluzanski, A., Burgio, M. A., Garassino, M., Chow, L. Q. M., Gettinger, S., Crino, L., Planchard, D., Butts, C., Drilon, A., Wojcik-Tomaszewska, J., Otterson, G. A., Agrawal, S., Li, A., Penrod, J. R. and Brahmer, J. (2019) Four-year survival with nivolumab in patients with previously treated advanced non-small-cell lung cancer: a pooled analysis. Lancet Oncol. 20, 1395-1408. https://doi.org/10.1016/S1470-2045(19)30407-3
  2. Armand, P., Engert, A., Younes, A., Fanale, M., Santoro, A., Zinzani, P. L., Timmerman, J. M., Collins, G. P., Ramchandren, R., Cohen, J. B., De Boer, J. P., Kuruvilla, J., Savage, K. J., Trneny, M., Shipp, M. A., Kato, K., Sumbul, A., Farsaci, B. and Ansell, S. M. (2018) Nivolumab for relapsed/refractory classic Hodgkin lymphoma after failure of autologous hematopoietic cell transplantation: extended follow-up of the multicohort single-arm phase II CheckMate 205 trial. J. Clin. Oncol. 36, 1428-1439. https://doi.org/10.1200/JCO.2017.76.0793
  3. Bernard-Tessier, A., Baldini, C., Martin, P., Champiat, S., Hollebecque, A., Postel-Vinay, S., Varga, A., Bahleda, R., Gazzah, A., Michot, J. M., Ribrag, V., Armand, J. P., Marabelle, A., Soria, J. C. and Massard, C. (2018) Outcomes of long-term responders to antiprogrammed death 1 and anti-programmed death ligand 1 when being rechallenged with the same anti-programmed death 1 and anti-programmed death ligand 1 at progression. Eur. J. Cancer 101, 160-164. https://doi.org/10.1016/j.ejca.2018.06.005
  4. Budagian, V., Bulanova, E., Paus, R. and Bulfone-Paus, S. (2006) IL15/IL-15 receptor biology: a guided tour through an expanding universe. Cytokine Growth Factor Rev. 17, 259-280. https://doi.org/10.1016/j.cytogfr.2006.05.001
  5. Cheng, L. E., Ohlen, C., Nelson, B. H. and Greenberg, P. D. (2002) Enhanced signaling through the IL-2 receptor in CD8+ T cells regulated by antigen recognition results in preferential proliferation and expansion of responding CD8+ T cells rather than promotion of cell death. Proc. Natl. Acad. Sci. U. S. A. 99, 3001-3006. https://doi.org/10.1073/pnas.052676899
  6. Dranoff, G. (2004) Cytokines in cancer pathogenesis and cancer therapy. Nat. Rev. Cancer 4, 11-22. https://doi.org/10.1038/nrc1252
  7. Floros, T. and Tarhini, A. A. (2015) Anticancer cytokines: biology and clinical effects of interferon-alpha2, interleukin (IL)-2, IL-15, IL-21, and IL-12. Semin. Oncol. 42, 539-548. https://doi.org/10.1053/j.seminoncol.2015.05.015
  8. Fradet, Y., Bellmunt, J., Vaughn, D. J., Lee, J. L., Fong, L., Vogelzang, N. J., Climent, M. A., Petrylak, D. P., Choueiri, T. K., Necchi, A., Gerritsen, W., Gurney, H., Quinn, D. I., Culine, S., Sternberg, C. N., Nam, K., Frenkl, T. L., Perini, R. F., de Wit, R. and Bajorin, D. F. (2019) Randomized phase III KEYNOTE-045 trial of pembrolizumab versus paclitaxel, docetaxel, or vinflunine in recurrent advanced urothelial cancer: results of >2 years of follow-up. Ann. Oncol. 30, 970-976. https://doi.org/10.1093/annonc/mdz127
  9. Fyfe, G., Fisher, R. I., Rosenberg, S. A., Sznol, M., Parkinson, D. R. and Louie, A. C. (1995) Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J. Clin. Oncol. 13, 688-696. https://doi.org/10.1200/JCO.1995.13.3.688
  10. Goldstein, D. and Laszlo, J. (1988) The role of interferon in cancer therapy: a current perspective. CA Cancer J. Clin. 38, 258-277. https://doi.org/10.3322/canjclin.38.5.258
  11. Isaacs, A. and Lindenmann, J. (1988) Classics in oncology: virus interference: I. the interferon. CA Cancer J. Clin. 38, 280-290. https://doi.org/10.3322/canjclin.38.5.280
  12. Jauch, D., Martin, M., Schiechl, G., Kesselring, R., Schlitt, H. J., Geissler, E. K. and Fichtner-Feigl, S. (2011) Interleukin 21 controls tumour growth and tumour immunosurveillance in colitis-associated tumorigenesis in mice. Gut 60, 1678-1686. https://doi.org/10.1136/gutjnl-2011-300612
  13. Jenks, S. (1996) After initial setback, IL-12 regaining popularity. J. Natl. Cancer Inst. 88, 576-577. https://doi.org/10.1093/jnci/88.9.576
  14. Katze, M. G., He, Y. and Gale, M., Jr. (2002) Viruses and interferon: a fight for supremacy. Nat. Rev. Immunol. 2, 675-687. https://doi.org/10.1038/nri888
  15. Kobayashi, M., Fitz, L., Ryan, M., Hewick, R. M., Clark, S. C., Chan, S., Loudon, R., Sherman, F., Perussia, B. and Trinchieri, G. (1989) Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J. Exp. Med. 170, 827-845. https://doi.org/10.1084/jem.170.3.827
  16. Larkin, J., Chiarion-Sileni, V., Gonzalez, R., Grob, J. J., Rutkowski, P., Lao, C. D., Cowey, C. L., Schadendorf, D., Wagstaff, J., Dummer, R., Ferrucci, P. F., Smylie, M., Hogg, D., Hill, A., Marquez-Rodas, I., Haanen, J., Guidoboni, M., Maio, M., Schoffski, P., Carlino, M. S., Lebbe, C., McArthur, G., Ascierto, P. A., Daniels, G. A., Long, G. V., Bastholt, L., Rizzo, J. I., Balogh, A., Moshyk, A., Hodi, F. S. and Wolchok, J. D. (2019) Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 381, 1535-1546. https://doi.org/10.1056/NEJMoa1910836
  17. MaruYama, T., Chen, W. and Shibata, H. (2022) TGF-beta and cancer immunotherapy. Biol. Pharm. Bull. 45, 155-161. https://doi.org/10.1248/bpb.b21-00966
  18. Mishra, A., Sullivan, L. and Caligiuri, M. A. (2014) Molecular pathways: interleukin-15 signaling in health and in cancer. Clin. Cancer Res. 20, 2044-2050. https://doi.org/10.1158/1078-0432.CCR-12-3603
  19. Ruscetti, F. W. (1984) Biology of interleukin-2. Surv. Immunol. Res. 3, 122-126. https://doi.org/10.1007/BF02918777
  20. Saenz, S. A., Taylor, B. C. and Artis, D. (2008) Welcome to the neighborhood: epithelial cell-derived cytokines license innate and adaptive immune responses at mucosal sites. Immunol. Rev. 226, 172-190. https://doi.org/10.1111/j.1600-065X.2008.00713.x
  21. Saka, H., Nishio, M., Hida, T., Nakagawa, K., Sakai, H., Nogami, N., Atagi, S., Takahashi, T., Horinouchi, H., Takenoyama, M., Katakami, N., Tanaka, H., Takeda, K., Satouchi, M., Isobe, H., Maemondo, M., Goto, K., Hirashima, T., Minato, K., Yada, N. and Tamura, T. (2021) Five-year follow-up results from phase II studies of nivolumab in Japanese patients with previously treated advanced non-small cell lung cancer: pooled analysis of the ONO-4538-05 and ONO-4538-06 studies. Jpn. J. Clin. Oncol. 51, 106-113. https://doi.org/10.1093/jjco/hyaa157
  22. Sim, G. C. and Radvanyi, L. (2014) The IL-2 cytokine family in cancer immunotherapy. Cytokine Growth Factor Rev. 25, 377-390. https://doi.org/10.1016/j.cytogfr.2014.07.018
  23. Skrombolas, D. and Frelinger, J. G. (2014) Challenges and developing solutions for increasing the benefits of IL-2 treatment in tumor therapy. Expert Rev. Clin. Immunol. 10, 207-217. https://doi.org/10.1586/1744666X.2014.875856
  24. Sondergaard, H. and Skak, K. (2009) IL-21: roles in immunopathology and cancer therapy. Tissue Antigens 74, 467-479. https://doi.org/10.1111/j.1399-0039.2009.01382.x
  25. Spolski, R. and Leonard, W. J. (2008) Interleukin-21: basic biology and implications for cancer and autoimmunity. Annu. Rev. Immunol. 26, 57-79. https://doi.org/10.1146/annurev.immunol.26.021607.090316
  26. Stolfi, C., Rizzo, A., Franze, E., Rotondi, A., Fantini, M. C., Sarra, M., Caruso, R., Monteleone, I., Sileri, P., Franceschilli, L., Caprioli, F., Ferrero, S., MacDonald, T. T., Pallone, F. and Monteleone, G. (2011) Involvement of interleukin-21 in the regulation of colitis-associated colon cancer. J. Exp. Med. 208, 2279-2290. https://doi.org/10.1084/jem.20111106
  27. Waldmann, T. A. (2004) Targeting the interleukin-15/interleukin-15 receptor system in inflammatory autoimmune diseases. Arthritis Res. Ther. 6, 174-177. https://doi.org/10.1186/ar1202
  28. Waldmann, T. A. (2018) Cytokines in cancer immunotherapy. Cold Spring Harb. Perspect. Biol. 10, a028472.
  29. Wang, X., Lupardus, P., Laporte, S. L. and Garcia, K. C. (2009) Structural biology of shared cytokine receptors. Annu. Rev. Immunol. 27, 29-60. https://doi.org/10.1146/annurev.immunol.24.021605.090616