DOI QR코드

DOI QR Code

A new approach for predicting sulfate ion concentration in concrete

  • Mohammad Ghanooni-Bagha (Department of Civil Engineering, East Tehran Branch, Islamic Azad University) ;
  • Mohsen Ali Shayanfar (The Centre of Excellence for Fundamental Studies in Structural Engineering, Iran University of Science and Technology) ;
  • Sajad Momen (Department of Civil Engineering, East Tehran Branch, Islamic Azad University)
  • Received : 2022.07.26
  • Accepted : 2023.01.06
  • Published : 2024.01.25

Abstract

Aggressive environmental conditions, and especially the acidic effects of sulfate ion penetration, have reduced the lifetime of concrete structures in some areas, especially coastal and marine areas. In this research, at first, samples made of type II and V cement were kept in a solution of magnesium sulfate (MgSO4) for a period of 90 and 180 days, the change of appearance. Field Emission Scanning Electron Microscopy (FE-SEM) and X-Ray Diffraction (XRD), were used to analyze the microstructure and the complex mineral composition of the concrete after exposure to corrosive environments. Then solving the differential equation governing the sulfate ion penetration, which is based on the second Fick law, it has been tried to determine the concentration of sulfate ions inside the concrete. In the following, an attempt has been made to improve the prediction of sulfate ion concentration in concrete by using Crank's penetration equation. At the same time, the coefficient in the Crank's solution have been optimized by using the Particle Swarm Optimization (PSO algorithm). The comparison between the results shows that the values obtained from Crank's relation are closer to the experimental results than the equation obtained from Fick's second law and shows a more accurate prediction.

Keywords

Acknowledgement

The present study was financially supported by Committee for Scientific Research of Islamic Azad University, East Tehran Branch, Tehran, Iran (IAUET).

References

  1. Al-Dulaijan, S.U. (2007), "Sulfate resistance of plain and blended cements exposed to magnesium sulfate solutions", Constr. Build. Mater., 21(8), 1792-1802. https://doi.org/10.1016/j.conbuildmat.2006.05.017.
  2. Asteris, P.G., Apostolopoulou, M., Skentou, A.D. and Moropoulou, A. (2019), "Application of artificial neural networks for the prediction of the compressive strength of cement-based mortars", Comput. Concrete, 24(4), 329-345. https://doi.org/10.12989/cac.2019.24.4.329.
  3. ASTM C114-15 (2000), Standard Test Methods for Chemical Analysis of Hydraulic Cement, ASTM International, West Conshohocken, PA, USA.
  4. Berrocal, C.G., Fernandez, I. and Rempling, R. (2022), "The interplay between corrosion and cracks in reinforced concrete beams with non-uniform reinforcement corrosion", Mater. Struct., 55(4), 1-16. https://doi.org/10.1617/s11527-022-01956-2.
  5. Brown, P.W. (1981), "An evaluation of the sulfate resistance of cements in a controlled environment", Cement Concrete Res., 11(5-6), 719-727. https://doi.org/10.1016/0008-8846(81)90030-2.
  6. Cefis, N. and Comi, C. (2017), "Chemo-mechanical modelling of the external sulfate attack in concrete", Cement Concrete Res., 93, 57-70. https://doi.org/10.1016/j.cemconres.2016.12.003.
  7. Chen, J.K., Jiang, M.Q. and Zhu, J. (2008), "Damage evolution in cement mortar due to erosion of sulphate", Corros. Sci., 50, 2478-2483. https://doi.org/10.1016/j.corsci.2008.05.021.
  8. Collepardi, M. (2003), "A state-of-the-art review on delayed ettringite attack on concrete", Cement Concrete Compos., 25(4-5), 401-407. https://doi.org/10.1016/S0958-9465(02)00080-X.
  9. Crank, J. (1975), The Mathematics of Diffusion 2nd Edn, Clarendon Press, Oxford, UK.
  10. Danckwerts, P.V. (1950), "Absorption by simultaneous diffusion and chemical reaction", Trans. Faraday Soc., 46, 300-304. https://doi.org/10.1039/TF9504600300.
  11. Danckwerts, P.V. (1950), "Unsteady-state diffusion or heatconduction with moving boundary", Trans. Faraday Soc., 46, 701-712. https://doi.org/10.1039/TF9504600701.
  12. Ghanooni-Bagha, M., Shayanfar, M.A., Shirzadi-Javid, A.A. and Ziaadiny, H. (2016), "Corrosion-induced reduction in compressive strength of self-compacting concretes containing mineral admixtures", Constr. Build. Mater., 113, 221-228. https://doi.org/10.1016/j.conbuildmat.2016.03.046.
  13. Hartell, J.A. (2009), "Sodium sulphate attack on concrete: Effect on mechanical properties", Mater's Degree Thesis, McGill University, West Montreal, Quebec, Canada.
  14. Huang, L., Jin, X., Fu, C., Ye, H. and Dong, X. (2020), "Stochastic characteristics of reinforcement corrosion in concrete beams under sustained loads", Comput. Concrete, 25(5), 447-460. https://doi.org/10.12989/cac.2020.25.5.447.
  15. Huber, B., Hilbig, H., Drewes, J.E. and Muller, E. (2017), "Evaluation of concrete corrosion after short-and long-term exposure to chemically and microbially generated sulfuric acid", Cement Concrete Res., 94, 36-48. https://doi.org/10.1016/j.cemconres.2017.01.005.
  16. Idiart, A.E., Lopez, C.M. and Carol, I. (2011), "Chemo-mechanical analysis of concrete cracking and degradation due to external sulfate attack: a meso-scale model", Cement Concrete Compos., 33(3), 411-423. https://doi.org/10.1016/j.cemconcomp.2010.12.001.
  17. Idiart, A.E., Lopez, C.M. and Carol, I. (2011), "Chemo-mechanical analysis of concrete cracking and degradation due to external attack: A meso-scale model", Cement Concrete Compos., 33(3), 411-423. https://doi.org/10.1016/j.cemconcomp.2010.12.001.
  18. Ikumi, T., Cavalaro, S.H., Segura, I. and Aguado, A. (2014), "Alternative methodology to consider damage and expansions in external sulfate attack modeling", Cement Concrete Res., 63, 105-116. https://doi.org/10.1016/j.cemconres.2014.05.011.
  19. Ikumi, T., Cavalaro, S.H., Segura, I., de la Fuente, A. and Aguado, A. (2016), "Simplified methodology to evaluate the external sulfate attack in concrete structures", Mater. Des., 89, 1147-1160. https://doi.org/10.1016/j.matdes.2015.10.084.
  20. Karakoc, M.B., Turkmen, I., Maras, M.M., Kantarci, F. and Demirboga, R. (2016), "Sulfate resistance of ferrochrome slag based geopolymer concrete", Ceramics Int., 42(1), 1254-1260. https://doi.org/10.1016/j.ceramint.2015.09.058.
  21. Li, J., Xie, F., Zhao, G. and Li, L. (2020), "Experimental and numerical investigation of cast-in-situ concrete under external sulfate attack and drying-wetting cycles", Constr. Build. Mater., 249, 118789. https://doi.org/10.1016/j.conbuildmat.2020.118789.
  22. Li, J.P., Yao, M.B. and Shao, W. (2016), "Diffusion-reaction model of stochastically mixed sulfate in cast-in-situ piles", Constr. Build. Mater., 115, 662-668. https://doi.org/10.1016/j.conbuildmat.2016.04.075.
  23. Momma, K. and Izumi, F. (2011), "VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data", J. Appl. Crystallogr., 44(6), 1272-1276. https://doi.org/10.1107/S0021889811038970.
  24. Mullauer, W., Beddoe, R.E. and Heinz, D. (2013), "Sulfate attack expansion mechanisms", Cement Concrete Res., 52, 208-215. https://doi.org/10.1016/j.cemconres.2013.07.005.
  25. Nie, L., Xu, J. and Bai, E. (2017), "The research on static and dynamic mechanical properties of concrete under the environment of sulfate ion and chlorine ion", Comput. Concrete, 20(2), 205-214. https://doi.org/10.12989/cac.2017.20.2.205.
  26. Nie, Q., Zhou, C., Li, H., Shu, X., Gong, H. and Huang, B. (2015), "Numerical simulation of fly ash concrete under sulfate attack", Constr. Build. Mater., 84, 261-268. https://doi.org/10.1016/j.conbuildmat.2015.02.088.
  27. Roziere, E., Loukili, A., El Hachem, R. and Grondin, F. (2009), "Durability of concrete exposed to leaching and external sulphate attacks", Cement Concrete Res., 39(12), 1188-1198. https://doi.org/10.1016/j.cemconres.2009.07.021.
  28. Sarkar, S., Mahadevan, S., Meeussen, J.C.L., Sloot, H.V.D. and Kosson, D.S. (2012), "Numerical simulation of cementitious materials degradation under external sulfate attack", Cement Concrete Compos., 32, 241-252. https://doi.org/10.1016/j.cemconcomp.2009.12.005.
  29. Sarkar, S., Mahadevan, S., Meeussen, J.C.L., Van der Sloot, H. and Kosson, D.S. (2010), "Numerical simulation of cementitious materials degradation under external sulfate attack", Cement Concrete Compos., 32(3), 241-252. https://doi.org/10.1016/j.cemconcomp.2009.12.005.
  30. Shaheen, F. and Pradhan, B. (2017), "Influence of sulfate ion and associated cation type on steel reinforcement corrosion in concrete powder aqueous solution in the presence of chloride ions", Cement Concrete Res., 91, 73-86. https://doi.org/10.1016/j.cemconres.2016.10.008.
  31. Shayanfar, M.A., Barkhordari, M.A. and Ghanooni-Bagha, M. (2015), "Probability calculation of rebars corrosion in reinforced concrete using css algorithms", J. Central South Univ., 22(8), 3141-3150. https://doi.org/10.1007/s11771-015-2851-9.
  32. Sun, C., Chen, J., Zhu, J., Zhang, M. and Ye, J. (2013), "A new diffusion model of sulfates in concrete", Constr. Build. Mater., 39, 39-45. https://doi.org/10.1016/j.conbuildmat.2012.05.022.
  33. Sun, D., Wu, K., Shi, H., Zhang, L. and Zhang, L. (2018), "Effect of interfacial transition zone on the transport of sulfate ions in concrete", Constr. Build. Mater., 192, 28-37. https://doi.org/10.1016/j.conbuildmat.2018.10.140.
  34. Tennich, M., Ouezdou, M.B. and Kallel, A. (2017), "Behavior of self-compacting concrete made with marble and tile wastes exposed to external sulfate attack", Constr. Build. Mater., 135, 335-342. https://doi.org/10.1016/j.conbuildmat.2016.12.193.
  35. Tixier, R. and Mobasher, B. (2003), "Modeling of damage in cement-based materials subjected to external sulfate attack. I: Formulation", J. Mater. Civil Eng., 15(4), 305-313. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:4(305).
  36. Tixier, R. and Mobasher, B. (2003), "Modeling of damage in cement-based materials subjected to external sulfate attack. II: Comparison with experiments", J. Mater. Civil Eng., 15(4), 314-322. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:4(314).
  37. Tu, X. and Wu, Y. (2023), "Numerical analysis on corrosion and mechanical performance of shear stud connector in concrete", Constr. Build. Mater., 363, 129816-129832. https://doi.org/10.1016/j.conbuildmat.2022.129816.
  38. Tu, X., Pang, C., Zhou, X. and Chen, A. (2019), "Numerical study of ITZ contribution on diffusion of chloride and induced rebar corrosion: A discussion of three-dimensional multiscale approach", Comput. Concrete, 23(1), 69-80. https://doi.org/10.12989/cac.2019.23.1.069.
  39. Val, D.V., Chernin, L. and Stewart, M.G. (2009), "Experimental and numerical investigation of corrosion-induced cover cracking in reinforced concrete structures", Struct. Eng., 135, 376-385. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:4(376).
  40. Xie, F., Li, J., Li, L., Zhao, G. and Yao, M. (2019), "Numerical solution and damage evaluation for cast-in-situ piles exposed to external sulfate attack", Constr. Build. Mater., 214, 269-279. https://doi.org/10.1016/j.conbuildmat.2019.04.132.
  41. Yin, G.J., Zuo, X.B., Tang, Y.J., Ayinde, O. and Wang, J.L. (2017), "Numerical simulation on timede pendent mechanical behavior of concrete under coupled axial loading and sulfate attack", Ocean. Eng., 142, 115-124. https://doi.org/10.1016/j.oceaneng.2017.07.016.
  42. Yin, G.J., Zuo, X.B., Wen, X.D. and Tang, Y.J. (2021), "Experimental study and modeling on stress-strain curve of sulfate-corroded concrete", Comput. Concrete, 28(1), 1-12. https://doi.org/10.12989/cac.2021.28.1.001.
  43. Yoon, H., Yang, K., Tuan, N. and Kwon, S. (2022), "Service life of concrete culverts repaired with biological sulfate-resisting mortars", Comput. Concrete, 30, 409-419. https://doi.org/10.12989/cac.2022.30.6.409.
  44. Zhao, G., Li, J., Han, F., Shi, M. and Fan, H. (2019), "Sulfate-induced degradation of cast-in-situ concrete influenced by magnesium", Constr. Build. Mater., 199, 194-206. https://doi.org/10.1016/j.conbuildmat.2018.12.022.
  45. Zhou, X., Tu, X., Chen, A. and Wang, Y. (2019), "Numerical simulation approach for structural capacity of corroded reinforced concrete bridge", Adv. Concrete Constr., 7(1), 11-22. https://doi.org/10.12989/acc.2019.7.1.011.
  46. Zhou, Y., Tian, H., Cui, H., Xing, F. and Sui, L. (2015), "Model for sulfate diffusion depth in concrete under complex aggressive environments and its experimental verification", Adv. Mater. Sci. Eng., 2015, 1. https://doi.org/10.1155/2015/693834.