DOI QR코드

DOI QR Code

Proposal of Strength-Based Design Procedure for Improving the Seismic Performance of Steel Ordinary Moment Frames

철골 보통모멘트골조의 내진성능 향상을 위한 강도기반 설계 절차 제안

  • Kim, Taeo (Department of Architectural Engineering, Hanyang University) ;
  • Han, Sang Whan (Department of Architectural Engineering, Hanyang University)
  • 김태오 (한양대학교 건축공학과) ;
  • 한상환 (한양대학교 건축공학과)
  • Received : 2023.08.04
  • Accepted : 2023.11.03
  • Published : 2024.01.01

Abstract

The ductility of the system based on the capacity of each structural member constituting the seismic force-resisting system is a significant factor determining the structure's seismic performance. This study aims to provide a procedure to supplement the current seismic design criteria to secure the system's ductility and improve the seismic performance of the steel ordinary moment frames. For the study, a nonlinear analysis was performed on the 9- and 15-story model buildings, and the formation of collapse mechanisms and damage distribution for dynamic loads were analyzed. As a result of analyzing the nonlinear response and damage distribution of the steel ordinary moment frame, local collapse due to the concentration of structural damage was observed in the case where the influence of the higher mode was dominant. In this study, a procedure to improve the seismic performance and avoid inferior dynamic response was proposed by limiting the strength ratio of the column. The proposed procedure effectively improved the seismic performance of steel ordinary moment frames by reducing the probability of local collapse.

Keywords

Acknowledgement

본 논문은 한국연구재단의 지원(NRF-2017R1A2B3008937) 연구의 일환으로 수행되었음.

References

  1. KDS 41 17 00. Seismic Building Design Code. Korea Construction Standards Center; c2019.
  2. ASCE 7-16. Minimum Design Loads and Associated Criteria for Buildings and Other Structures. Reston, VA: American Society of Civil Engineers; c2017.
  3. NIST GCR 12-917-20. Tentative Framework for Development of Advanced Seismic Design Criteria for New Buildings. Gaithersburg, MD: National Institute of Standards and Technology; c2017.
  4. AISC 341-22. Seismic Provisions for Structural Steel Buildings. Chicago, IL: American Institute of Steel Construction; c2022.
  5. Shim JE, Choi I, Kim JH. Performance-Based Evaluation of Seismic Demand Proposals for RC Ordinary Moment Frames by Spectrum Revision. EESK J. Earthquake Eng. 2022 Sep;26(5):211-217. https://doi.org/10.5000/EESK.2022.26.5.211
  6. Kim M, Han SW, Kim T. Seismic Collapse Risk for Non-Ductile Reinforce Concrete Buildings According to Seismic Design Category. EESK J. Earthquake Eng. 2021 Jul;25(4):161-168. https://doi.org/10.5000/EESK.2021.25.4.161
  7. Han JM, Lee CS, Han SW. Load-displacement Response of Gravity Load Designed Reinforced Concrete Moment Frames with Various Height of Masonry Infill Walls. EESK J. Earthquake Eng. 2020 Jan;24(1):39-47. https://doi.org/10.5000/EESK.2020.24.1.039
  8. Kim CH, Lee SJ, Heo SJ, Eom TS. Investigation of Seismic Performance of RC Wall-Slab Frames with Masonry Infill. EESK J. Earthquake Eng. 2022 May;26(3):137-147. https://doi.org/10.5000/EESK.2022.26.3.137
  9. Kim T, Han SW. Effect of Analysis Procedures on Seismic Collapse Risk of Steel Special Moment Frames. EESK J. Earthquake Eng. 2020 Nov;24(6):243-251. https://doi.org/10.5000/EESK.2020.24.6.243
  10. Elkady A, Lignos DG. Modeling of the Composite Action in Fully Restrained Beam-to-column Connection: Implications in the Seismic Design and Collapse Capacity of Steel Special Moment Frames. Earthq Eng Struct D. 2013 Oct;43(13):1935-1954. https://doi.org/10.1002/eqe.2430
  11. AISC 341-22. Seismic Provisions for Structural Steel Buildings. Chicago, IL: American Institute of Steel Construction; c2022.
  12. AISC 358-22. Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications. Chicago, IL: American Institute of Steel Construction; c2022.
  13. AISC 360-22. Specification for Structural Steel Buildings. Chicago, IL: American Institute of Steel Construction; c2022.
  14. KDS 41 31 00. Korean Building Code for Steel Structures. Korea Construction Standard Center; c2019.
  15. Han SW, Kim TO, Baek SJ. Seismic performance evaluation of steel ordinary moment frames. Earthq. Spectra. 2018 Feb;34(1):55-76. https://doi.org/10.1193/011117EQS010M
  16. NIST GCR 10-917-8. Evaluation of the FEMA P695 Methodology for Quantification of Building Seismic Performance Factors. Gaithersburg, MD: National Institute of Standards and Technology; c2017.
  17. Computers and Structures Inc. ETABS v18.2.0. software. Available from: http://www.csiamerica.com/.
  18. McKenna F. OpenSees: A Framework for Earthquake Engineering Simulation. Comput Sci Eng. 2011 Jul;13(4):58-66. https://doi.org/10.1109/MCSE.2011.66
  19. NIST GCR 17-917-45. Recommended Modeling Parameters and Acceptance Criteria for Nonlinear Analysis in Support of Seismic Evaluation, Retrofit, and Design. Gaithersburg, MD: National Institute of Standards and Technology; c2017.
  20. Ibarra LF, Medina RA, Krawinkler H. Hysteretic Models That Incorporate Strength and Stiffness Deterioration. Earthq Eng Struct D. 2005 Oct;34(12):1489-1511. https://doi.org/10.1002/eqe.495
  21. Lignos DG, Hartloper AR, Elkady A, Deierlein GG, Hamburger R. Proposed Updates to the ASCE 41 Nonlinear Modeling Parameters for Wide-flange Steel Columns in Support of Performance-based Seismic Engineering. J. Struct. Eng. 2019 Sep;145(9):04019083.
  22. Bech D, Tremayne B, Houston J. Proposed Changes to Steel Column Evaluation Criteria for Extisting Buildings. In Improving the Seismic Performance of Existing Buildings and Other Structures 2015. 2015:255-272.
  23. Lignos DG, Krainkler H. Deterioration Modeling of Steel Components in Support of Collapse Prediction of Steel Moment Frames under Earthquake Loading. J. Struct. Eng. 2011 Nov;137(11):129-1302. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000376
  24. ASCE 41-17. Seismic Evaluation and Retrofit of Existing Buildings. Reston, VA: American Society of Civil Engineers; c2017.
  25. Gupta A, Krawinkler H. Seismic Demands for the Performance Evaluation of Steel Moment Resisting Frame Structures. Rep. No. 132. Stanford, CA: John A. Blume Earthquake Engineering Research Center; c1999.
  26. Han SW, Kwon GU, Moon KH. Cyclic behaviour of post-Northridge WUF-B connections. J. Constr. Steel Res. 20077 Mar;63(3): 365-374. https://doi.org/10.1016/j.jcsr.2006.05.003
  27. Zareian F, Medina RA. A practical method for proper modeling of structural damping in inelastic plane structural systems. Comput. Struct. 2010 Jan;88(1-2):45-53. https://doi.org/10.1016/j.compstruc.2009.08.001
  28. FEMA P695. Quantification of Buildings Seismic Performance Factors. Washington, DC: Federal Emergency Management Agency; c2009.
  29. Krishnan S, Muto M. Mechanism of collapse of tall steel moment-frame buildings under earthquake excitation. J. Struct. Eng. 2012 Nov;138(11):1361-1387. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000573
  30. Vamvatsikos D, Cornell CA. Incremental dynamic analysis. Earthq. Eng. Struct. Dyn. 2002 Mar;31(3):491-514. https://doi.org/10.1002/eqe.141
  31. Eads L, Miranda E, Krawinkler H, Lignos DG. An efficient method for estimating the collapse risk of structures in seismic regions. Earthq. Eng. Struct. Dyn. 2013 Jan;42(1):25-41. https://doi.org/10.1002/eqe.2191