DOI QR코드

DOI QR Code

Effect of crude fibre additives ARBOCEL and VITACEL on the physicochemical properties of granulated feed mixtures for broiler chickens

  • Jakub Urban (Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences) ;
  • Monika Michalczuk (Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences) ;
  • Martyna Batorska (Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences) ;
  • Agata Marzec (Department of Food Engineering and Process Management, Institute of Food Science, Warsaw University of Life Sciences) ;
  • Adriana Jaroszek (RETTENMAIER Polska Sp.z o.o) ;
  • Damian Bien (Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences)
  • Received : 2023.06.14
  • Accepted : 2023.09.18
  • Published : 2024.02.01

Abstract

Objective: The aim of the study was to evaluate the physicochemical properties (nutrient composition, pH, water content and activity, sorption properties) and mechanical properties (compression force and energy) of granulated feed mixtures with various inclusion levels of crude fibre concentrates ARBOCEL and VITACEL for broiler chickens, i.e. +0.0% (control group - group C), +0.3%, +0.8%, +1.0%, +1.2%. Methods: The feed mixtures were analyzed for their physicochemical properties (nutrient composition by near-infrared spectroscopy, pH with the use a CP-401 pH meter with an IJ-44C glass electrode, water content was determined with the drying method and activity was determined with the Aqua Lab Series 3, sorption properties was determined with the static method) and mechanical properties (compression force and energy with the use TA-HD plus texture analyzer). The Guggenheim-Anderson-de Boer (GAB) model applied in the study correctly described the sorption properties of the analyzed feed mixtures in terms of water activity. Results: The fibre concentrate type affected the specific surface area of the adsorbent and equilibrium water content in the GAB monolayer (p≤0.05) (significantly statistical). The type and dose of the fibre concentrate influenced the dimensionless C and k parameters of the GAB model related to the properties of the monolayer and multilayers, respectively (p≤0.05). They also affected the pH value of the analyzed feed mixtures (p≤0.05). In addition, crude fibre type influenced water activity (p≤0.05) as well as compression energy (J) and compression force (N) (p≤0.001) (highly significantly statistical) of the feed mixtures. Conclusion: The physicochemical analyses of feed mixtures with various inclusion levels (0.3%, 0.8%, 1.0%, 1.2%) of crude fiber concentrates ARBOCEL or VITACEL demonstrated that both crude fiber types may be used in the feed industry as a feedstuff material to produce starter type mixtures for broiler chickens.

Keywords

Acknowledgement

This research received no special or external funding. The costs of manuscript publication were funded by the Institute of Animal Sciences, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8 St., 02-786 Warsaw, Poland.

References

  1. Michalczuk M, Jozwik A, Damaziak K, et al. Age-related changes in the growth performance, meat quality, and oxidativeprocesses in breast muscles of three chicken genotypes. Turk J Vet Anim Sci 2016;40:389-98. https://doi.org/10.3906/vet-1502-64
  2. Zuidhof MJ, Schneider BL, Carney VL, Korver DR, Robinson FE. Growth, efficiency, and yield of commercial broilers from 1957, 1978, and 2005. Poult Sci 2014;93:2970-82. https://doi.org/10.3382/ps.2014-04291
  3. Hartcher KM, Lum HK. Genetic selection of broilers and welfare consequences: a review. World's Poult Sci J 2020;76:154-67. https://doi.org/10.1080/00439339.2019.1680025
  4. Havenstein GB, Ferket PR, Qureshi MA. Growth, livability, and feed conversion of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poult Sci 2003;82:1500-8. https://doi.org/10.1093/ps/82.10.1500
  5. Mateos GG, Lazaro R, Gracia MI. The feasibility of using nutritional modifications to replace drugs in poultry feeds. J Appl Poult Res 2002;11:437-52. https://doi.org/10.1093/JAPR/11.4.437
  6. Jimenez-Moreno E, Gonzalez-Alvarado JM, Gonzalez-Serrano A, Lazaro R, Mateos GG. Effect of dietary fiber and fat on performance and digestive traits of broilers from one to twenty-one days of age. Poult Sci 2009;88:2562-74. https://doi.org/10.3382/PS.2009-00179
  7. Montagne L, Pluske JR, Hampson DJ. A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Anim Feed Sci Technol 2003;108:95-117. https://doi.org/10.1016/S0377-8401(03)00163-9
  8. Hetland H, Svihus B, Choct M. Role of insoluble fiber on gizzard activity in layers. J Appl Poult Res 2005;14:38-46. https://doi.org/10.1093/JAPR/14.1.38
  9. Duke GE. Alimentary canal: secretion and digestion, special digestive functions, and absorption. In: Sturkie PD, editor. Avian physiology. New York NY USA: Springer; 1986. pp. 289-302.
  10. Guinotte F, Gautron J, Nys Y, Soumarmon A. Calcium solubilization and retention in the gastrointestinal tract in chicks (Gallus Domesticus) as a function of gastric acid secretion inhibition and of calcium carbonate particle size. Br J Nutr 1995;73:125-39. https://doi.org/10.1079/BJN19950014
  11. Tejeda OJ, Kim WK. Role of dietary fiber in poultry nutrition. Animals 2021;11:461. https://doi.org/10.3390/ANI11020461
  12. Shang Q, Wu D, Liu H, Mahfuz S, Piao X. The impact of wheat bran on the morphology and physiology of the gastrointestinal tract in broiler chickens. Animals 2020;10:1831. https://doi.org/10.3390/ANI10101831
  13. Wagner DD, Thomas OP. Influence of diets containing rye or pectin on the intestinal flora of chicks. Poult Sci 1978;57:971-5. https://doi.org/10.3382/PS.0570971
  14. Jozefiak D, Rutkowski A, Kaczmarek S, Jensen BB, Engberg RM, HOjberg O. Effect of β-glucanase and xylanase supplementation of barley- and rye-based diets on caecal microbiota of broiler chickens. 2010;51:546-57. https://doi.org/10.1080/00071668.2010.507243
  15. Walugembe M, Hsieh JCF, Koszewski NJ, Lamont SJ, Persi ME, Rothschild MF. Effects of dietary fiber on cecal shortchain fatty acid and cecal microbiota of broiler and layinghen chicks. Poult Sci 2015;94:2351-9. https://doi.org/10.3382/PS/PEV242
  16. Nabizadeh A. The effect of inulin on broiler chicken intestinal microflora, gut morphology, and performance. J Anim Feed Sci 2012;21:725-34. https://doi.org/10.22358/JAFS/66144/2012
  17. Raninen K, Lappi J, Mykkanen H, Poutanen K. Dietary fiber type reflects physiological functionality: comparison of grain fiber, inulin, and polydextrose. Nutr Rev 2011;69:9-21. https://doi.org/10.1111/j.1753-4887.2010.00358.x
  18. Kheravii SK, Swick RA, Choct M, Wu SB. Coarse particle inclusion and lignocellulose-rich fiber addition in feed benefit performance and health of broiler chickens. Poult Sci 2017;96:3272-81. https://doi.org/10.3382/ps/pex123
  19. Mateos GG, Jimenez-Moreno E, Serrano MP, Lazaro RP. Poultry response to high levels of dietary fiber sources varying in physical and chemical characteristics. J Appl Poult Res 2012;21:156-74. https://doi.org/10.3382/japr.2011-00477
  20. Jimenez-Moreno E, Romero C, Berrocoso JD, Frikha M, Mateos GG. Effects of the inclusion of oat hulls or sugar beet pulp in the diet on gizzard characteristics, apparent ileal digestibility of nutrients, and microbial count in the ceca in 36- day-old broilers reared on floor. In: Proceedings of 100th Annual Meeting Poultry Science Association; St. Louis, MO, USA; 2011 (Abstr). Vol 90 pp. 135.
  21. Farran MT, Akilian HA, Hamoud AM, Barbour GW, Saoud IP. Lignocellulose improves protein and amino acid digestibility in roosters and egg hatchability in broiler breeders. J Poult Sci 2017;54:197-204. https://doi.org/10.2141/JPSA.0160095
  22. Bosse A, Pietsch M, Beynen A, Schenkel H, Mateos GG, Gidenne T. Fiber in animal nutrition. A practical guide for monogastrics. European Union: Agrimedia; 2017.
  23. Kareem KY, Loh TC, Foo HL, Akit H, Samsudin AA. Effects of dietary postbiotic and inulin on growth performance, IGF1 and GHR MRNA expression, faecal microbiota and volatile fatty acids in broilers. BMC Vet Res 2016;12:163. https://doi.org/10.1186/s12917-016-0790-9
  24. Palacha Z, Sas A. Sorption properties of selected species of rice. Acta Agroph 2016;23:681-94.
  25. Lewicki PP. Water sorption isotherms and their estimation in food model mechanical mixtures. J Food Eng 1997;32:47-68. https://doi.org/10.1016/S0260-8774(97)00002-2
  26. Lewicki PP. The applicability of the GAB model to food water sorption isotherms. Int J Food Sci Technol 1997;32: 553-7. https://doi.org/10.1111/j.1365-2621.1997.tb02131.x
  27. Brunauer S, Deming LS, Deming WE, Teller E. On a theory of the van der waals adsorption of gases. J Am Chem Soc 1940;62:1723-32. https://doi.org/10.1021/ja01864a025
  28. Thiex N, Richardson CR. Challenges in measuring moisture content of feeds. J Anim Sci 2003;81:3255-66. https://doi.org/10.2527/2003.81123255x
  29. Alengadan PJ, Babu DE, Kallanickal PM. Moisture content control during cattle feed production -An Spc Based Approach. Int J Eng Res Technol 2013;2:3.
  30. Sharam N, Goh S. Introducing water activity as a measure for feed quality control (Part 1). Poultry TRENDS c2022 [cited 2023 Jan 4]. Available from: https://www.poultrytrends.in/introducing-water-activity-as-a-measure-for-feed-qualitycontrol-part-1/
  31. Chirife J, del Pilar Buera M, Labuza TP. Water activity, water glass dynamics, and the control of microbiological growth in foods. Crit Rev Food Sci Nutr 1996;36:465-513. https://doi.org/10.1080/10408399609527736
  32. Roos YH. Water activity and glass transition. In: Barbosa-Canovas GV, Fontana AJ, Schmidt SJ, Labuza TP, editors. Water activity in foods: fundamentals and applications; 2020. pp. 27-43. https://doi.org/10.1002/9781118765982.ch3
  33. Marks N, Sobol Z, Baran D. Granulated fodder resistance evaluation methods comparison. Inzynieria Rolnicza 2006;10:289-96.
  34. Kulig R, Laskowski J. Effect of selected properties of raw materials on strength characteristics of granulated product. Inzynieria Rolnicza 2006;13:251-60.
  35. Behnke KC. Factors affecting pellet quality [cited 2023 Jan 4]. In: Feed pelleting reference guide. Section 5: pellet durability. Manhattan, KS, USA: Kansas State University. Available from: https://www.feedstrategy.com/wp-content/uploads/ 2019/09/5-19_Factors_affecting_pellet_quality.pdf
  36. Jimenez MG, De La Torre PM. Relevant aspects of quality in feed granulation. Nutrinews. c2020 [cited 2023 Aug 6]. Available from: https://nutrinews.com/en/relevant-aspects-of-quality-in-feed-granulation/
  37. Perez-Alonso C, Beristain CI, Lobato-Calleros C, Rodriguez-Huezo ME, Vernon-Carter EJ. Thermodynamic analysis of the sorption isotherms of pure and blended carbohydrate polymers. J Food Eng 2006;77:753-60. https://doi.org/10.1016/J.JFOODENG.2005.08.002