DOI QR코드

DOI QR Code

Long Term Flux Variation Analysis on the Boseong Paddy Field

보성 농업지역에서의 장기간 플럭스 특성 분석

  • Young-Tae Lee (Observation Research Department, National Institute of Meteorological Science) ;
  • Sung-Eun Hwang (Observation Research Department, National Institute of Meteorological Science) ;
  • Byeong-Taek Kim (Observation Research Department, National Institute of Meteorological Science) ;
  • Ki-Hun Kim (Observation Research Department, National Institute of Meteorological Science)
  • 이영태 (국립기상과학원 관측연구부) ;
  • 황성은 (국립기상과학원 관측연구부) ;
  • 김병택 (국립기상과학원 관측연구부) ;
  • 김기훈 (국립기상과학원 관측연구부)
  • Received : 2023.11.04
  • Accepted : 2023.12.13
  • Published : 2024.02.29

Abstract

In this paper, Annual flux variations in the Boseong Tall Tower (BTT) from 2016 to 2020 were analyzed using data from three levels (2.5 m, 60 m, and 300 m). BTT was installed in Boseong-gun, Jeollanam-do in February 2014 and continued to conduct energy exchange observations such as CO2, sensible heat, and latent heat using the eddy covariance method until March 2023. The BTT was located in a very flat and uniform paddy field, and flux observations were conducted at four levels: 2.5 m, 60 m, 140 m, and 300 m above ground. Surface energy balance was confirmed from observed data of net radiation flux, soil heat flux, sensible heat flux, and latent heat flux. Additionally, 2.5 m height surface fluxes, which are most influenced by agricultural land, were compared with data from Local Data Assimilation and Prediction System (LDAPS) of the Korea Meteorological Administration to evaluate the accuracy of LDAPS flux data. The correlation coefficient between LDAPS flux data and observed values was 0.95 or higher. Excluding summer latent heat flux data, there was a general tendency for LDAPS data to be higher than observed values. The footprint areas estimated below 60 m height mainly covered agricultural land, and flux observations at 2.5 m and 60 m heights showed typical agricultural characteristics. In contrast, the footprint estimated at 300 m height did not show agricultural characteristics, indicating that observations at this height encompassed a wide range, including mountains, sea, and roads. The analysis results of long-term flux observations can contribute to understanding the energy and carbon dioxide fluxes in agricultural fields. Furthermore, these results can be utilized as essential data for validating and improving numerical models related to such fluxes.

Keywords

Acknowledgement

본 연구는 기상청 국립기상과학원 「국가 기상관측 장비 및 관측자료 표준화(KMA2018-00221)」 사업의 지원으로 수행되었습니다.

References

  1. Chong, J.-H., S.-H. Lee, S.-S. Shin, S.-E. Hwang, Y.-T. Lee, J.-Y. Kim, and S.-B. Kim, 2019: Research on the meteorological technology development using drones in the fourth industrial revolution. J. Korea Contents Assoc., 19, 12-21, doi:10.5392/JKCA.2019.19.11.012.
  2. Chu, H., and Coauthors, 2021: Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites. Agric. Forest Meteor., 301, 108350, doi:10.1016/j.agrformet.2021.108350.
  3. Hwang, S.-E., Y.-T. Lee, S.-S. Shin, and K.-H. Kim, 2020: Study on the local weather characteristics using observation data at the boseong tall tower. J. Korean Earth Sci. Soc., 41, 459-468, doi:10.5467/JKESS.2020.41.5.459.
  4. Hwang, S.-E., B.-T. Kim, Y.-T. Lee, S.-S. Shin, and K.-H. Kim, 2021: A comparative study of the atmospheric boundary layer type in the local data assimilation and prediction system using the data of boseong standard weather observatory. J. Korean Earth Sci. Soc., 42, 504-513, doi:10.5467/JKESS.2021.42.5.504.
  5. Kim, H., J.-W. Hong, Y.-J. Lim, J. Hong, S.-S. Shin, and Y.-J. Kim, 2019: Evaluation of JULES land surface model based on in-situ data of NIMS flux sites. Atmosphere, 29, 355-365, doi:10.14191/Atmos.2019.29.4.355.
  6. Kim, M.-S., and B.-H. Kwon, 2019: Estimation of sensible heat flux and atmospheric boundary layer height using an unmanned aerial vehicle. Atmosphere, 10, 363, doi:10.3390/atmos10070363.
  7. Kim, S., Y. Jeong, S. Cho, Y. Youn, N. Kim, and Y. Lee, 2020: A comparison between the reference evapotranspiration products for croplands in Korea: case study of 2016~2019. Korean J. Remote Sens., 36, 1465-1483, doi:10.7780/kjrs.2020.36.6.1.14.
  8. Kim, W., S.-S. Yum, J. Hong, and J.-I. Song, 2020: Improvement of fog simulation by the nudging of meteorological tower data in the WRF and PAFOG coupled model. Atmosphere, 11, 311, doi:10.3390/atmos11030311.
  9. Kljun, N., P. Calanca, M. W. Rotach, and H. P. Schmid, 2004: A simple parameterisation for flux footprint predictions. Bound.-Layer Meteor., 112, 503-523, doi:10.1023/B:BOUN.0000030653.71031.96.
  10. Lenters, J.-D., T. K. Kratz, and C. J. Bowser, 2005: Effects of climate variability on lake evaporation: Results from a long-term energy budget study of Sparkling Lake, northern Wisconsin (USA). J. Hydrol., 308, 168-195, doi:10.1016/j.jhydrol.2004.10.028.
  11. Lim, H.-J., and Y.-H. Lee, 2019: Characteristics of sea breezes at coastal area in Boseong. Atmosphere, 29, 41-51, doi:10.14191/Atmos.2019.29.1.041.
  12. Meyers, T. P., and S. E. Hollinger, 2004: An assessment of storage terms in the surface energy balance of maize and soybean. Agric. Forest Meteor., 125, 105-115, doi:10.1016/j.agrformet.2004.03.001.
  13. Oswald, C. J., and W. R. Rouse, 2004: Thermal characteristics and energy balance of various-size Canadian Shield lakes in the Mackenzie River Basin. J. Hydrometeor., 5, 129-144, doi:10.1175/1525-7541(2004)005<0129:TCAEBO>2.0.CO;2.
  14. Park, C., Y.-T. Lee, and S.-H. Lee, 2021: Characteristics of atmospheric CO2 fluxes and the estimation of their potential sources around Boseong Standard Weather Observatory (BSWO). Atmos. Environ., 252, 118340, doi:10.1016/j.atmosenv.2021.118340.
  15. Park, J., H.-S. Kim, S.-J. Lee, and T. Ha, 2018: Numerical evaluation of JULES surface tiling scheme with high-resolution atmospheric forcing and land cover data. SOLA, 14, 19-24, doi:10.2151/sola.2018-004.
  16. Pastorello, G., and Coauthors, 2020: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific data, 7, 225, doi:10.1038/s41597-020-0534-3.
  17. Rouse, W. R., C. J. Oswald, J. Binyamin, C. Spence, W. M. Schertzer, P. D. Blanken, N. Bussieres, and C. R. Duguay, 2005: The role of northern lakes in a regional energy balance. J. Hydrometeor., 6, 291-305, doi:10.1175/JHM421.1.
  18. Santanello, J. A., C. D. Peters-Lidard, S. V. Kumar, C. Alonge, and W.-K. Tao, 2009: A modeling and observational framework for diagnosing local land-atmosphere coupling on diurnal time scales. J. Hydrometeor., 10, 577-599, doi:10.1175/2009JHM1066.1.
  19. Seo, E., and P. A. Dirmeyer, 2022: Understanding the diurnal cycle of land-atmosphere interactions from flux site observations. Hydrol. Earth Syst. Sci., 26, 5411-5429, doi:10.5194/hess-26-5411-2022.
  20. Seo, E., P. A. Dirmeyer, M. Barlage, H. Wei, and M. Ek, 2023: Evaluation of land-atmosphere coupling processes and climatological bias in the UFS global coupled model. J. Hydrometeor., 25, 161-175, doi:10.1175/JHM-D23-0097.1.
  21. Seo, Y., and J. Cha, 2023: Precipitation probability prediction through NWP bias correction for South Korea using random forest. Int. J. Advanced Sci., Eng. Inf. Technol., 13, 935-942, doi:10.18517/ijaseit.13.3.18224.
  22. Weedon, G. P., C. Prudhomme, S. Crooks, R. J. Ellis, S. S. Folwell, and M. J. Best, 2015: Evaluating the performance of hydrological models via cross-spectral analysis: case study of the Thames Basin, United Kingdom. J. Hydrometeor., 16, 214-231, doi:10.1175/JHM-D14-0021.1.
  23. Wever, L. A., L. B. Flanagan, and P. J. Carlson, 2002: Seasonal and interannual variation in evapotranspiration, energy balance and surface conductance in a northern temperate grassland. Agric. Forest Meteor., 112, 31-49, doi:10.1016/S0168-1923(02)00041-2.
  24. Wilson, K., and Coauthors, 2002: Energy balance closure at FLUXNET sites. Agric. Forest Meteor., 113, 223-243, doi:10.1016/S0168-1923(02)00109-0.
  25. Wofsy, S. C., M. L. Goulden, J. W. Munger, S.-M. Fan, P. S. Bakwin, B. C. Daube, S. L. Bassow, and F. A. Bazzaz, 1993: Net exchange of CO2 in a mid-latitude forest. Science, 260, 1314-1317, doi:10.1126/science.260.5112.1314.
  26. Yun, J.-H., H. Oh, and K.-J. Ha, 2015: Observation and analysis of turbulent fluxes observed at ieodo ocean research station in autumn 2014. Atmosphere, 25, 707-718, doi:10.14191/Atmos.2015.25.4.707.