Acknowledgement
This project (result) is the result of a study conducted as part of the 3-stage Industry-Academia-Research Cooperation Leading University Development Project (LINC 3.0) supported by funds from the Ministry of Education and the National Research Foundation of Korea.
References
- Arrowsmith, C., Burns, D., Mak, T., Hardisty, M. & Whyne, C. (2022). Physiotherapy exercise classification with single-camera pose detection and machine learning. Sensors, 23(1), 363.
- Auer, S., Süß, F. & Dendorfer, S. (2024). Using markerless motion capture and musculoskeletal models: An evaluation of joint kinematics. Technology and Health Care, 32(5), 3433-3442. https://doi.org/10.3233/THC-240202
- Carse, B., Meadows, B., Bowers, R. & Rowe, P. (2013). Affordable clinical gait analysis: An assessment of the marker tracking accuracy of a new low-cost optical 3D motion analysis system. Physiotherapy, 99(4), 347-351. https://doi.org/10.1016/j.physio.2013.03.001
- Colyer, S. L., Evans, M., Cosker, D. P. & Salo, A. I. (2018). A review of the evolution of vision-based motion analysis and the integration of advanced computer vision methods towards developing a markerless system. Sports Medicine-Open, 4, 1-15. https://doi.org/10.1186/s40798-017-0116-x
- Hollman, J. H., McDade, E. M. & Petersen, R. C. (2011). Normative spatiotemporal gait parameters in older adults. Gait & Posture, 34(1), 111-118. https://doi.org/10.1016/j.gaitpost.2011.03.024
- Hulleck, A. A., Alshehhi, A., El Rich, M., Khan, R., Katmah, R., Mohseni, M., Arjmand, N. & Khalaf, K. (2024). BlazePose-Seq2Seq: Leveraging regular RGB cameras for robust gait assessment. IEEE Transactions on Neural Systems and Rehabilitation Engineering.
- Hulleck, A. A., Menoth Mohan, D., Abdallah, N., El Rich, M. & Khalaf, K. (2022). Present and future of gait assessment in clinical practice: Towards the application of novel trends and technologies. Frontiers in Medical Technology, 4, 901331.
- Kidziński, Ł, Yang, B., Hicks, J. L., Rajagopal, A., Delp, S. L. & Schwartz, M. H. (2020). Deep neural networks enable quantitative movement analysis using single-camera videos. Nature Communications, 11(1), 4054.
- Maynard, V., Bakheit, A., Oldham, J. & Freeman, J. (2003). Intra-rater and inter-rater reliability of gait measurements with CODA mpx30 motion analysis system. Gait & Posture, 17(1), 59-67. https://doi.org/10.1016/S0966-6362(02)00051-6
- McGinley, J. L., Baker, R., Wolfe, R. & Morris, M. E. (2009). The reliability of three-dimensional kinematic gait measurements: A systematic review. Gait & Posture, 29(3), 360-369. https://doi.org/10.1016/j.gaitpost.2008.09.003
- Moran, M. F., Rogler, I. C. & Wager, J. C. (2023). Inter-session repeatability of marker-less motion capture of treadmill running gait. Applied Sciences, 13(3), 1702.
- Moro, M., Marchesi, G., Hesse, F., Odone, F. & Casadio, M. (2022). Markerless vs. marker-based gait analysis: A proof of concept study. Sensors, 22(5), 2011.
- Ohri, A., Agrawal, S. & Chaudhary, G. S. (2021). On-device real-time pose estimation & correction. International Journal of Advances in Engineering and Management (IJAEM), 3(7), 1691-1696.
- Pirker, W. & Katzenschlager, R. (2017). Gait disorders in adults and the elderly: A clinical guide. Wiener Klinische Wochenschrift, 129(3), 81-95. https://doi.org/10.1007/s00508-016-1096-4
- Ripic, Z., Nienhuis, M., Signorile, J. F., Best, T. M., Jacobs, K. A. & Eltoukhy, M. (2023). A comparison of three-dimensional kinematics between markerless and marker-based motion capture in overground gait. Journal of Biomechanics, 159, 111793.
- Stenum, J., Cherry-Allen, K. M., Pyles, C. O., Reetzke, R. D., Vignos, M. F. & Roemmich, R. T. (2021). Applications of pose estimation in human health and performance across the lifespan. Sensors, 21(21), 7315.
- Uhlrich, S. D., Falisse, A., Kidziński, Ł, Muccini, J., Ko, M., Chaudhari, A. S., Hicks, J. L. & Delp, S. L. (2023). OpenCap: Human movement dynamics from smartphone videos. PLoS Computational Biology, 19(10), e1011462.
- Van Hooren, B., Pecasse, N., Meijer, K. & Essers, J. M. N. (2023). The accuracy of markerless motion capture combined with computer vision techniques for measuring running kinematics. Scandinavian Journal of Medicine & Science in Sports, 33(6), 966-978. https://doi.org/10.1111/sms.14319
- Wang, H., Su, B., Lu, L., Jung, S., Qing, L., Xie, Z. & Xu, X. (2024). Markerless gait analysis through a single camera and computer vision. Journal of Biomechanics, 165, 112027.
- Winter, D. A. (1991). Biomechanics and motor control of human gait: Normal, elderly and pathological.
- Yang, J. & Park, K. (2024). Improving gait analysis techniques with markerless pose estimation based on smartphone location. Bioengineering, 11(2), 141.
- Young, F., Mason, R., Morris, R., Stuart, S. & Godfrey, A. (2023). Internet-of-things-enabled markerless running gait assessment from a single smartphone camera. Sensors, 23(2), 696.
- Young, F., Wall, C., Graham, L., Stuart, S., Morris, R. & Godfrey, A. (2023). Lightweight markerless identification of temporal gait outcomes with BlazePose. Paper presented at the 2023 IEEE 19th International Conference on Body Sensor Networks (BSN), 1-4.
- Yoo, T. G., Choi, J. R. & Kim, D. W. (2012). Dynamics-based walking motion tracking using a single camera. January 2012 Journal of Electronic Engineering Volume 49 SC No. 1.
- Zhang, Y., Gan, J., Zhao, Z., Chen, J., Chen, X., Diao, Y. & Tu, S. (2023). A real-time fall detection model based on BlazePose and improved ST-GCN. Journal of Real-Time Image Processing, 20(6), 121.