DOI QR코드

DOI QR Code

정전 분무 간접 하전 방식에서 미세액적 최적 발생 조건에 관한 연구

A Study on the Optimal Generation Conditions of Micro-Droplet in Electrostatic Spray Indirect Charging Method

  • 이지희 (세명대학교 소방방재공학과) ;
  • 김성환 (인하대학교 전기공학과) ;
  • 정해영 (세명대학교 소방방재학과)
  • Jihee Lee (Department of Fire and Disaster Prevention Engineering, Semyung University) ;
  • Sunghwan Kim (Department of Electrical Engineering, Inha University) ;
  • Haiyoung Jung (Department of Fire and Disaster Prevention, Semyung University)
  • 투고 : 2023.10.13
  • 심사 : 2023.10.31
  • 발행 : 2024.01.01

초록

This paper is a study on the optimal microdroplet generation conditions in indirect charging electrostatic spraying. Unlike the direct charging method, which applies power to the nozzle, the indirect charging method applies power to the discharge electrode between the nozzle and the collection electrode. Therefore, an electrically simplified system can be obtained by minimizing the insulation part a stable spray pattern can be obtained with a wide spray angle, and a stable spray pattern can be obtained with a wide spray angle. To conduct the study, an indirect charging type electrostatic spray visualization system was constructed and the static characteristics of the microdroplets were analyzed through image processing of the spray shape of the microdroplets. The total number of microdroplets and the number of microdroplets per power consumption are confirmed according to the changes in the distance between the discharge electrode and the collection electrode, the flow rate, and the applied voltage, which affect the generation of microdroplets, and using this, the optimal generation conditions are derived and the corresponding microdroplet size distribution was analyzed. As a result of the experiment, it was confirmed that the optimal generation condition was at a flow rate of 15 to 20 mL/min and a voltage of -22.5 to -25 kV in terms of the number of microdroplets, and at a flow rate of 15 to 20 mL/min and a voltage of -20 kV in terms of energy consumption efficiency.

키워드

과제정보

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호 RS-2021-KA164174). 본 과제(결과물)는 2023년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다(2021RIS-001).

참고문헌

  1. S. Lee, Korean Soc. Environ. Sociol., 25, 7 (2021). doi: https://doi.org/10.22734/ECO.25.2.202112.001
  2. M. Kim, Int. J. Tourism Hospitality Res., 35, 131 (2021). doi: https://doi.org/10.21298/IJTHR.2021.5.35.5.131
  3. H. Lee, T. Yoon, and Y. Lee, Korean Energy Econ. Rev., 21, 161 (2022). doi: https://doi.org/10.22794/keer.2022.21.2.006
  4. A. S. Jang, Korean J. Med., 88, 150 (2015). doi: https://doi.org/10.3904/kjm.2015.88.2.150
  5. W. Yang, Health Welfare Forum, 269, 20 (2019). doi: https://doi.org/10.23062/2019.03.3
  6. S. Kyung and S. Jeong, J. Korean Med. Assoc., 60, 391 (2017). doi: https://doi.org/10.5124/jkma.2017.60.5.391
  7. J. Kim and J. J. Kim, J. Korean Soc. Visualization, 19, 130 (2021). doi: https://doi.org/10.5407/jksv.2021.19.3.130
  8. K. M. Jang, E. S. Jung, and J. M. Suh, J. Environ. Sci. Int., 29, 457 (2020). doi: https://doi.org/10.5322/JESI.2020.29.5.457
  9. S. Park, J. Park, Y. Noh, Y. Choi, S. Kang, Y. Lee, and J. Choi, J. Energy Climate Change, 16, 231 (2021). doi: https://doi.org/10.22728/jecc.2021.16.2.231
  10. H. Liu, R. Tian, C. Liu, J. Zhang, M. Tian, X. Ning, X. Hu, and H. Wang, Polymers, 14, 3975 (2022). doi: https://doi.org/10.3390/polym14193975
  11. S. Choi, S. Kim, and H. Jung, Electronics, 12, 2579 (2023). doi: https://doi.org/10.3390/electronics12122579
  12. S. Kim, M. Jung, S. Choi, J. Lee, J. Lim, and M. Kim, Exp. Therm Fluid Sci., 118, 110151 (2020). doi: https://doi.org/10.1016/j.expthermflusci.2020.110151
  13. Y. Cho, S. Kim, H. Lim, S. Choi, and M. Kim, J. Mech. Sci. Technol., 33, 4563 (2019). doi: https://doi.org/10.1007/s12206-019-0853-5
  14. J. Choi, K. Jeong, and H. Jung, Int. J. Fire Sci. Eng., 36, 1 (2022). doi: https://doi.org/10.7731/KIFSE.75841f94
  15. S. Choi, S. Kim, and H. Jung, J. Korean Inst. Electr. Electron. Mater. Eng., 36, 474 (2023). doi: https://doi.org/10.4313/JKEM.2023.36.5.6
  16. H. M. Davenport and L. K. Peters, Atmos. Environ., 12, 997 (1978). doi: https://doi.org/10.1016/0004-6981(78)90344-X
  17. C. Carotenuto, F. Di Natale, and A. Lancia, Chem. Eng. J., 165, 35 (2010). doi: https://doi.org/10.1016/j.cej.2010.08.049
  18. H. T. Kim, C. H. Jung, S. N. Oh, and K. W. Lee, Env. Eng. Sci., 18, 125 (2001). doi: https://doi.org/10.1089/10928750151132357
  19. M. K. Jung, S. Y. Kim, J. H. Lim, J. W. Lee, and S. H. Jeong, Trans. Korean Soc. Mech. Eng. B, 46, 121 (2022). doi: https://doi.org/10.3795/KSME-B.2022.46.2.121
  20. A. M. Ganan-Calvo, Phys. Rev. Lett., 79, 217 (1997). doi: https://doi.org/10.1103/PhysRevLett.79.217
  21. R.P.A. Hartman, D. J. Brunner, D.M.A. Camelot, J.C.M. Marijnissen, and B. Scarlett, J. Aerosol Sci., 31, 65 (2000). doi: https://doi.org/10.1016/s0021-8502(99)00034-8