DOI QR코드

DOI QR Code

Optimization of Curing Pressure for Automatic Pressure Gelation Molding Process of Ultra High Voltage Insulating Spacers

초고압 절연 스페이서의 자동가압 겔화 성형 공정을 위한 경화 보압의 최적화

  • Chanyong Lee (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Hangoo Cho (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Jaehyeong Lee (Department of Electrical and Computer Engineering, Sungkyunkwan University)
  • 이찬용 (성균관대학교 전자전기컴퓨터공학과 ) ;
  • 조한구 (성균관대학교 전자전기컴퓨터공학과 ) ;
  • 이재형 (성균관대학교 전자전기컴퓨터공학과 )
  • Received : 2023.08.08
  • Accepted : 2023.08.25
  • Published : 2024.01.01

Abstract

By introducing curing kinetics and chemo-rheology for the epoxy resin formulation for ultra-high voltage gas insulated switchgear (GIS) Insulating Spacers, a study was conducted to simulate the curing behavior, flow and warpage analysis for optimization of the molding process in automatic pressure gelation. The curing rate equation and chemo-rheology equation were set as fixed values for various factors and other physical property values, and the APG molding process conditions were entered into the Moldflow software to perform optimization numerical simulations of the three-phase insulating spacer. Changes in curing shrinkage according to pack pressure were observed under the optimized process conditions. As a result, it was confirmed that the residence time in the solid state was shortened due to the lowest curing reaction when the curing holding pressure was 3 bar, and the occurrence of deformation due to internal residual stress was minimized.

Keywords

Acknowledgement

본 연구는 2022년도 산업통상자원부(MOTIE) 및 한국산업기술평가관리원(KEIT)의 지원을 받아 수행한 연구입니다('20010965').

References

  1. L. T. De Paolis, A. Agrimi, A. Zocco, and G. Aloisio, Proc. 11th WSEAS International Conference on Computers (Agios Nikolaos, Crete Island, Greece, 2007) p. 514.
  2. K. Kasza and L. Matysiak, PAK, 59, 1143 (2013).
  3. T. Nowak, R. Sekula, P. Saj, K. Kasza, H. Leskosek, and O. Claus, Adv. Polym. Tech., 25, 51 (2006). doi: https://doi.org/10.1002/adv.20057
  4. T. Ageyeva, I. Sibikin, and J. G. Kovacs, Polymers, 11, 1555 (2019). doi: https://doi.org/10.3390/polym11101555
  5. Y. G. Hong and S. M. Lee, Polym. Sci. Korea, 45, 940 (2021). doi: https://doi.org/10.7317/pk.2021.45.6.940
  6. X. Kong and D. Zheng, Processes, 9, 770 (2021). doi: https://doi.org/10.3390/pr9050770
  7. X. Kong, J. Guo, D. Zheng, J. Zhang, and W. Fu, Processes, 8, 146 (2020). doi: https://doi.org/10.3390/pr8020146
  8. Q. Zhang, J. Li, X. Han, X. Zhang, C. He, and X. Yao, IEEE Electr. Insul. Magazine, 35, 34 (2019). doi: https://doi.org/10.1109/MEI.2019.8735668
  9. N. T. Tran and M. Gehde, Polym. Test., 73, 284 (2019). doi: https://doi.org/10.1016/j.polymertesting.2018.11.042
  10. Y. J. Woo and D. S. Kim, J. Therm. Anal. Calorim., 144, 119 (2021). doi: https://doi.org/10.1007/s10973-020-10159-2
  11. Y. G. Hong, S. M. Lee, Y. J. Yoo, and J. W. Lee, Polym. Sci. Korea, 41, 260 (2017). doi: https://doi.org/10.7317/pk.2017.41.2.260
  12. Z. Ran, X. Liu, X. Jiang, Y. Wu, and H. Liao, Thermochim. Acta, 692, 178735 (2020). doi: https://doi.org/10.1016/j.tca.2020.178735
  13. D. Abliz, B. Finke, A. Kwade, C. Schilde, and G. Ziegmann, Cure Kinetics and Rheology, In Acting Principles of NanoScaled Matrix Additives for Composite Structures (M. Sinapius and G. Ziegmann, Eds.) (Springer, 2021) p. 267. doi: https://doi.org/10.1007/978-3-030-68523-2_12
  14. C. Leistner, S. Hartmann, D. Abliz, and G. Ziegmann, Continuum Mech. Thermodyn., 32, 327 (2020). doi: https://doi.org/10.1007/s00161-018-0708-9