DOI QR코드

DOI QR Code

Ultra-Low Power MICS RF Transceiver Design for Wireless Sensor Network

WSN 을 위한 초저전력 MICS RF 송수신기 기술 개요 및 설계 기법

  • Gyu-won Kim (Department of Radio and Information Communication Engineering, Chungnam National University) ;
  • Yu-jung Kim (Department of Radio and Information Communication Engineering, Chungnam National University) ;
  • Junghwan Han (Department of Radio and Information Communication Engineering, Chungnam National University)
  • Received : 2023.09.19
  • Accepted : 2024.01.08
  • Published : 2024.01.31

Abstract

This paper discusses the design of bio-implanted ultra-low-power MICS RF transceivers for wireless sensor networks. The 400 MHz MICS standard was considered for the implementation of the WBAN wireless sensor system, indirectly minimizing radio propagation losses in the human body and the inference with surrounding networks. This paper includes link budget, various transmission and reception architectures for a system design and ultra-low power transceiver circuit techniques for the implementation of RF transceivers that meet MICS standards.

본 논문에서는 무선 센서 네트워크를 위한 생체이식형 초저전력 MICS RF 트랜시버 설게에 대해 다룬다. 400 MHz MICS 표준은 WBAN 무선 센서 시스템 구현을 위해, 인체 내 전파적 특성 및 주변 네트워크와의 간접 최소화하며 고려되었다. 본 논문은 MICS 표준에 부합하는 시스템 및 송수신기 설계를 위한 link budget 및 다양한 송수신 아키텍쳐, 초저전력 송수신기 회로기법을 포함한다.

Keywords

Acknowledgement

이 논문은 산업통상자원부가 지원한 '차세대지능형반도체기술개발' 사업으로 지원을 받아 수행된 연구 결과입니다. [과제고유번호: 20025736]

References

  1. H. S. Savci et al., "MICS transceivers: regulatory standards and applications [medical implant communications service]," IEEE Southeast Conf., pp. 179-182, Apr. 2005. 
  2. M. Magno and L. Benini, "An ultra low power high sensitivity wake-up radio receiver with addressing capability," 2014 IEEE 10th International Conf. on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 92-99, Oct. 2014. 
  3. H. Sjoland et al., "A receiver architecture for devices in wireless body area networks," IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. ED-2, no. 1, pp. 82-95, Mar. 2012.  https://doi.org/10.1109/JETCAS.2012.2186681
  4. K.-W. Cheng and S. Chen, "An ultralow-power OOK/BFSK/DBPSK wake-up receiver based on injection-locked oscillator," IEEE Trans. on VLSI Systems, vol. ED-7, no. 21, pp. 1379-1391, Jul. 2021.  https://doi.org/10.1109/TVLSI.2021.3073166
  5. T. Taris et al., "An FSK and OOK compatible RF demodulator for wake-up receiver," Journal of Low Power Electronics and Applications, vol. ED-5, no. 4, pp. 274-290, Nov. 2015  https://doi.org/10.3390/jlpea5040274
  6. M. Song et al., "A millimeter-scale crystal-less MICS transceiver for insertable smart pills," IEEE Transactions on Biomedical Circuits and Systems, vol. ED-14, no. 6, pp. 1218-1229, Nov. 2020.  https://doi.org/10.1109/TBCAS.2020.3036905
  7. P. D. Bradley, "An ultra low power, high performance medical implant communication system(MICS) transceiver for implantable devices", in 2006 IEEE Biomedical Circuits and Systems Conference, pp. 158-161. 
  8. H. W. Pflug et al., "Radio channel characterization for 400 MHz implanted devices," in Proc. 2014 IEEE Wireless Comm. and Net. Conf. (WCNC), Apr. 2014, pp. 1-7.
  9. A. Ba et al., "A 0.33 nJ/bit IEEE802.15.6/Proprietary MICS/ISM wireless transceiver with scalable data rate for medical implantable applications," IEEE Journal of Biomedical and Health Informatics, vol. 19, no. 3, pp. 920-929, Mar. 2015.  https://doi.org/10.1109/JBHI.2015.2414298
  10. M. Bettaieb et al., "A novel MICS chirp FSK receiver front-end," 2017 International Conference on Engineering & MIS (ICEMIS), pp. 1-6, Feb. 2017. 
  11. R. van Langevelde et al., "An ultra-low-power 868/915 MHz RF transceiver for wireless sensor network applications," 2009 IEEE Radio Frequency Integrated Circuits Symposium, pp. 113-116, June 2009. 
  12. D Galante-Sempere, et al., "Area-Efficient Integrated Current-Reuse Feedback Amplifier for WakeUp Receivers in Wireless Sensor Network Applications," Sensors, vol. ED-22, no. 4, pp. 1662, February. 2022. 
  13. P. P. Mercier et al., "Low-power RF wake-up receivers: analysis, tradeoffs, and design," IEEE Open Journal of the Solid-State Circuits Society, Oct. 2022. 
  14. N. M. Pletcher et al., "A 52 µW wake-up receiver with -72dBm sensitivity using an uncertain-IF architecture," IEEE Journal of solid-state circuits, vol. 44, no. 1, pp. 269-280, Dec. 2008.  https://doi.org/10.1109/JSSC.2008.2007438
  15. S. Woo et al., "A gm-boosted common-gate CMOS low-noise amplifier with high P1dB," Analog Integrated Circuits and Signal Processing, pp. 33-37, Apr. 2014. 
  16. L. M. Devlin et al., "A 2.4 GHz single chip transceiver," IEEE Microwave and Millimeter Wave Monolithic Circuits Symp., pp. 23-26, 1993. 
  17. M. Mubin and A. Marzuki, "A low-noise amplifier utilizing current-reuse technique and active shunt feedback for MedRadio band applications," International Journal of Electrical and Electronic Engineering & Telecommunications, vol. 9, no. 5, pp. 306-316, Jan. 2020.  https://doi.org/10.18178/ijeetc.9.5.306-316
  18. J. Han and Ranjit. Gharpurey, "Recursive receiver down-converters with multiband feedback and gainreuse," IEEE Journal of Solid-State Circuits, vol. ED43, no. 5, May 2008. 
  19. B. Bae and J. Han, "24-40GHz gain-boosted wideband CMOS down-conversion mixer employing body-effect control for 5G NR applications." IEEE Trans. on Circuits and Systems II: Express Briefs, vol. ED-63, no. 3, Mar. 2022. 
  20. M. M. El-Desouki et al., "A low-power CMOS class-E power amplifier for biotelemetry applications," 2005 European Microwave Conference, vol. 1, pp. 4, Oct. 2005. 
  21. C. C. Ho et al., "A fully integrated class-E CMOS amplifier with a class-F driver stage," IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pp. 211-214, June 2003. 
  22. J. Bae, N. Cho and H.-J. Yoo, "A 490uW fully MICS compatible FSK transceiver for implantable devices", Proc. Symp. VLSI Circuits, pp. 36-37, Jun. 2009. 
  23. T. Copani et al., "A CMOS low-power transceiver with reconfigurable antenna interface for medical implant applications", IEEE Trans. Microw. Theory Tech., vol. 59, no. 5, pp. 1369-1378, May 2011.  https://doi.org/10.1109/TMTT.2011.2116036
  24. M. Lee et al., "A CMOS medradio transceiver with supply-modulated power saving technique for an implantable brain-machine interface system", IEEE J. Solid-State Circuits, vol. 54, no. 6, pp. 1541-1552, Jun 2019.  https://doi.org/10.1109/JSSC.2019.2899521
  25. X. Huang, et. al, "A 2.4GHz/915MHz 51µW wakeup receiver with offset and noise suppression," IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 222-223, Feb. 2010. 
  26. M. S. Durante and S. Mahlknecht, "An ultra low power wakeup receiver for wireless sensor nodes", Proc. Third International Conference on Sensor Technologies and Applications (SENSORCOMM), pp. 167-170, 2009. 
  27. J. Ayers, K. Mayaram and T. S. Fiez, "An ultralow-power receiverfor wireless sensor networks", IEEE J. Solid-State Circuits, vol. 45, no. 9, pp. 1759-1769, Sep. 2010.  https://doi.org/10.1109/JSSC.2010.2056850