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MEASURE-VALUED SOLUTIONS FOR STOCHASTIC

DIFFERENTIAL EQUATIONS ON HILBERT SPACES

DRIVEN BY LÉVY MEASURE AND THEIR OPTIMAL

CONTROL

Nasir U. Ahmed

Abstract. In this paper we consider a general class of nonlinear stochas-

tic differential equations on Hilbert spaces determined by nonstandard in-

finitesimal generators (drift, diffusion, jump-kernel) and driven by Lévy
process (measure). The infinitesimal generators are assumed to be only

continuous and bounded on bounded sets. Under such relaxed assump-

tions, these equations do not have solutions in the usual sense (classical,
strong, mild and weak). We prove existence of measure-valued solutions

and consider several control problems (including control of the range of
vector measures) and prove existence of partially observed optimal feed-

back controls. This paper is an extension of our previous studies on sim-

ilar problems for deterministic as well as stochastic differential equations
driven by cylindrical Brownian motion.

1. Introduction

Deterministic as well as Stochastic differential equations have been exten-
sively studied in the literature using Lipschitz (or locally Lipschitz) and at most
linear growth properties. It is known that for finite dimensional deterministic
systems, simple continuity of the vector field is sufficient to prove existence of
local solutions which may blow up in finite time. In the case of infinite dimen-
sional systems, even this is no longer true. The vector field may be continuous,
yet the system has no solution. There are counter examples as presented by
Dieudonne [12] and Godunov [15].
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The system we consider in this paper is described by the following stochastic
differential equation

dx = Axdt+ F (t, x)dt+G(t, x)dW +

∫
Eδ

H(t, x, v)q(dv × dt),(1)

t ∈ I = [0, T ], x(0) = x0

on a Hilbert space E where {A,F,G,H} are the infinitesimal generators defin-
ing the system equation (1) driven by the Wiener process and the compensated
Poisson random measure q. These processes are assumed to be stochastically
independent. More details are given below.

Let H be a separable real Hilbert space and let (Ω,F ,Ft≥0, P ) be a complete
filtered probability space where {Ft, t ≥ 0} is an increasing family of sub-sigma
algebras of the sigma algebra F , assumed to be continuous from the right and
having limits from the left. LetW ≡ {W (t), t ≥ 0} be an Ft-adapted H valued
cylindrical Brownian motion, and p(dξ × dt) be a random measure defined on
the sigma algebra of subsets of the set Eδ × I where Eδ ≡ E \ Bδ with Bδ

denoting the open ball in E of radius δ > 0 and centered at the origin. The
measure p is said to be a Poisson random measure or a counting measure if for
each time interval ∆ ⊂ I and any Borel set S ⊂ Eδ, the probability that there
are exactly n jumps of sizes (or with range) confined in the set S is given by

P{p(S ×∆) = n} =
(Λ(S)λ(∆))n

n!
exp{−Λ(S)λ(∆)},

where λ(dt) ≡ dt denotes the Lebesgue measure on I and Λ denotes the Lévy
(jump) measure on the sigma algebra of Borel subsets of the set Eδ. The term
Λ(S) (the Lévy measure of the set S) denotes the mean rate of jumps of all
sizes confined in the set S.We note that the measure Λ can be chosen according
to the specific needs of applications. Define the random measure

q(S ×∆) ≡ p(S ×∆)− Λ(S)λ(∆)

with mean zero and variance Λ(S)λ(∆). This is the measure used in equation
(1). The random measure q is called the compensated Poisson random measure.

Throughout the rest of the paper, it is assumed that for each t ≥ 0, Ft(⊂ F)
is the smallest σ-algebra with respect to which both the processes {W (s), s ≤ t}
and {q(B, s), B ∈ Bor.(Eδ), 0 ≤ s ≤ t} are measurable (or Ft-adapted). This
fact is essential to justify the martingale representation given by the expression
(18).

2. Background materials

Let X be any regular topological space and BC(X) the Banach space of
bounded continuous real valued functions endowed with supnorm topology. It
is well known that the topological dual of this space is given by Mrba(X),
the space of regular bounded finitely additive measures. The space Mrba(X),
endowed with total variation norm, is a Banach space.
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Lemma 2.1 ([14]). The topological dual BC(X)∗ is isometrically isomorphic
to Mrba(X) in the sense that for any ℓ ∈ BC(X)∗ there exists a unique element
µ ∈ Mrba(X) such that

ℓ(φ) =

∫
X

φ(x)µ(dx), for all φ ∈ BC(X)

and that |ℓ| = |µ|v.

We are interested in the space of regular bounded finitely additive proba-
bility measures on X which is denoted by Prba(X). Clearly this is a subset
of Mrba(X). Further on, we need the concept of measure valued functions
µ : I ≡ [0, T ] −→ Mrba(X). It is well known that the spaces BC(X) and
Mrba(X) do not satisfy the RNP (Radon-Nikodym property). Hence the dual
of L1(I,BC(X)) is not given by L∞(I,Mrba(X)). However, by virtue of the
theory of lifting [19, Tulcea and Tulcea, Theorem 7, p.94], the (topological)
dual of L1(I,BC(X)) is given by Lw

∞(I,Mrba(X)) which consists of weak star
measurable Mrba(X) valued functions. This is furnished with the weak star
(w∗) topology. Any continuous linear functional ℓ on L1(I,BC(X)) has the
representation

ℓ(φ) =

∫
I×X

φ(t, x)µt(dx)dt

for some µ ∈ Lw
∞(I,Mrba(X)). This follows directly from Lemma 2.1.

In this paper we are interested in measure valued stochastic processes. These
are Ft-adapted w∗-measurable Mrba(X)-valued random processes. Consider
the Banach space L1(I×Ω, BC(X)) of dt×dP integrableBC(X) valued random
processes with the norm topology given by

∥ φ ∥L1(I×Ω,BC(E))=

∫
I×Ω

sup{|φ(t, ω, ξ)|, ξ ∈ X}dtdP

=

∫
I×Ω

∥ φ ∥BC(X) dtdP.

Again it follows from the theory of lifting [19, Tulcea and Tulcea] that the
topological dual of this space is given by Lw

∞(I × Ω,Mrba(X)) which consists
of w∗-measurable Ft-adapted Mrba(X) valued random processes. In other
words, L1(I ×Ω, BC(X))∗ ∼= Lw

∞(I ×Ω,Mrba(X)). Thus, for any ℓ ∈ (L1(I ×
Ω, BC(X)))∗, there exists a unique µ ∈ Lw

∞(I × Ω,Mrba(X)) such that

ℓ(φ) =

∫
I×Ω

µt,ω(φ)dtdP ≡
∫
I×Ω×X

φ(t, ω, x)µt,ω(dx)dtdP.(2)

In this work, we use X = E where E is a Hilbert space which is clearly a com-
plete metric space. It is known that every metric space is a Tychonoff space
and that Stone-Ĉheck compactification of any Tychonoff space is a compact
Hausdorff space. Clearly, E is a Tychonoff space and thus its Stone-Ĉech com-
pactification denoted by βE ≡ E+ is a compact Hausdorff space containing
a dense subspace which is homeomorphic to E. Since homeomorphic spaces



1038 N. U. AHMED

are topologically equivalent, we have E ⊂ E+ and it is dense in E+ [20],
[3]. Throughout the rest of the paper, we use this Hausdorff space E+ and
consider the topological space L1(I × Ω, BC(E+)) with its topological dual
Lw
∞(I × Ω,Mrba(E

+)). Since E+ is a compact Hausdorff space, the regular
finitely additive measures have extensions to regular countably additive mea-
sures on the sigma algebra of Borel subsets of the set E+. Thus Mrba(E

+) can
be considered as Mrca(E

+), the space of regular countably additive measures.
See Dunford & Schwartz [14]. However, we continue to use the original nota-
tion in order to remind us that these measures originate from finitely additive
measures.

Consider the linear space Lw
∞(I×Ω,Mrba(E

+)) endowed with the weak-star
topology and let B1 denote it’s closed unit ball. By virtue of Alaoglu’s theorem,
the set B1 is weak-star compact. We are interested in the family of probability
measure valued stochastic processes denoted by Mw

∞(I ×Ω,Prba(E
+)). This is

a subset of Lw
∞(I × Ω,Mrba(E

+)) with elements taking values in the interval
[0, 1] and hence Mw

∞(I × Ω,Prba(E
+)) ⊂ B1. Thus every sequence (or net)

{µn} ∈ Mw
∞(I × Ω,Prba(E

+)) has a subsequence (subnet) that converges in
the weak-star topology to an element µ of B1. We show that, in fact, the
limit belongs to the set Mw

∞(I×Ω,Prba(E
+)). Note that for every nonnegative

φ ∈ L1(I × Ω, BC(E+)),

⟨µn, φ⟩ =
∫
I×Ω

µn(φ)dtdP ≥ 0, ∀ n ∈ N

and hence the limit ⟨µ, φ⟩ ≥ 0 preserving positivity. Similarly, one can test
this with non positive φ ≤ 0. Thus the set Mw

∞(I×Ω,Prba(E
+)) is a weak-star

closed subset of the weak star compact set B1 and hence it is also weak-star
compact. Since we forego the standard assumptions (such as Lipschitz and
linear growth) on the drift, diffusion and the jump kernel, generally assumed
in the literature to prove existence of mild solutions, we need to introduce
the following infinitesimal generators. Let {E,H} denote the pair of Hilbert
spaces mentioned above where E is the state space andH is the space where the
Wiener process W takes values from. Let C(E) denote the class of real valued
continuous functions defined on the Hilbert space E, not necessarily bounded,
and BC(E) ⊂ C(E) the class of bounded continuous functions endowed with
the standard sup norm topology. Clearly, endowed with this topology, BC(E)
is a Banach space. Similarly BC(I ×E) ⊂ C(I ×E). Let Φ denote the class of
test functions as defined below

Φ ≡ {φ ∈ BC(E) : Dφ ∈ C(E,E), D2φ ∈ C(E,L(E))},

where Dφ and D2φ denote the first and second Fréchet derivatives of φ. Let
Bδ denote the Borel algebra of subsets of the set Eδ and consider the (Lévy)
measure space (Eδ,Bδ,Λ) and let Hδ ≡ L2(Eδ,Λ) denote the Hilbert space of
real valued functions on Eδ which are square integrable with respect to the
Lévy measure Λ. We introduce the following operators {A,B, C1, C2} arising in
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the study of measure valued solutions as follows:

D(A) = {φ ∈ Φ : (Aφ) ∈ C(I × E)},
where

(Aφ)(t, ξ)(3)

≡ (1/2)Tr((D2φ(ξ))G(t, ξ)G∗(t, ξ))

+ (1/2)

∫
Eδ

⟨(D2φ(ξ))H(t, ξ, v),H(t, ξ, v)⟩EΛ(dv), (t, ξ) ∈ I × E,

and

D(B) = {φ ∈ Φ : Dφ(ξ) ∈ D(A∗), (Bφ) ∈ C(I × E)}
with D(A∗) denoting the domain of the adjoint of the operator A and

(Bφ)(t, ξ) ≡ ⟨A∗Dφ(ξ), ξ⟩E + ⟨Dφ(ξ), F (t, ξ)⟩E , (t, ξ) ∈ I × E.(4)

The operators {C1, C2} are continuous functions on I × E with values in H
and Hδ respectively as described below,

(C1φ)(t, ξ) ≡ G∗(t, ξ)Dφ(ξ), (C1φ) ∈ C(I × E,H) and(5)

(C2φ)(t, ξ) ≡ ⟨Dφ(ξ),H(t, ξ, ·)⟩E , (C2φ)(·) ∈ C(I × E,Hδ),(6)

where Hδ is the Hilbert space as introduced above.

3. Existence of measure-valued solutions

It is well known that if A is the infinitesimal generator of a C0-semigroup
on E and the nonlinear operators (drift, diffusion and the jump kernel) are
Lipschitz in the state variable x ∈ E and have at most linear growth with
Lipschitz and growth coefficients in L+

2 (I), then the system (1) has a unique
Ft-adapted path wise solution x ∈ Ba

∞(I, E) ⊂ L∞(I, L2(Ω, E)) satisfying

∥ x ∥Ba
∞(I,E)≡ sup{

(
E|x(t)|2E

)1/2
, t ∈ I} <∞.

Here Ba
∞(I, E) denotes the space of Ft-adapted E-valued stochastic processes

having finite second moments. Endowed with the norm topology as defined
above, it is a closed subspace of the Banach space L∞(I, L2(Ω, E)) and hence
a Banach space. Further, the solution has discontinuities of no more than that
of the first kind. It is known [8,12,15] that in infinite dimensional spaces if the
vector field is merely continuous, the system has no solution. This is very well
illustrated by counter examples given by Dieudonne [12] and Godunov [15].
However, if the notion of solution is extended beyond the classical ones such
as (strong, mild, weak) solutions, it has been proved under some very general
assumptions that measure valued solutions do exist [1,2,4–8]. See also the ref-
erences therein. Some of these papers consider stochastic differential equation
driven only by Brownian motion. In this paper, we consider stochastic sys-
tems driven both by Brownian motion and Lev́y process in particular Poisson
random measure.



1040 N. U. AHMED

We introduce the definition of measure valued solution as follows.

Definition 3.1. The stochastic system given by equation (1) is said to have
a measure-valued solution, if for each E-valued random element x0 with the
probability law µ0 ∈ Prba(E), there exists a µ ∈ Mw

∞(I × Ω,Prba(E
+)) ⊂

Lw
∞(I × Ω,Mrba(E

+)) such that, for every φ ∈ D(A) ∩D(B) having compact
support, the following identity holds P -almost surely

µt(φ) = µ0(φ) +

∫ t

0

µs(Aφ)ds+
∫ t

0

µs(Bφ)ds

+

∫ t

0

⟨µs(C1φ), dW (s)⟩+
∫ t

0

∫
Eδ

µs(C2φ)(v)q(dv × ds), t ∈ I.(7)

Now we introduce the basic assumptions.

Basic assumptions: The operators {A,F,G,H} satisfy the following assump-
tions:

(A1): The operator A is the infinitesimal generator of a C0-semigroup
{S(t), t ≥ 0} with values in the space of bounded linear operators L(E). For a
given finite interval I ≡ [0, T ], there exists a number M ≥ 1 such that

sup{∥ S(t) ∥L(E), t ∈ I} ≤M.

(A2): (i) The drift operator F, mapping I × E to E, is continuous and
bounded on bounded subsets of I × E.

(ii) There exists a sequence {Fn}, uniformly bounded on bounded subsets
of I × E, such that Fn(t, ξ) → F (t, ξ) uniformly on compact subsets of I × E
and there exists a sequence of positive real numbers {αn}, possibly αn → ∞,
such that

|Fn(t, ξ)|2E ≤ α2
n(1 + |ξ|2E), ξ ∈ E,

|Fn(t, ξ)− Fn(t, η)|2E ≤ α2
n|ξ − η|2E , ξ, η ∈ E.

(A3): (i) The diffusion operator G, mapping I ×E to L2(H,E) (the space
of Hilbert-Schmidt operators from H to E), is continuous and bounded on
bounded subsets of I × E.

(ii) There exists a sequence {Gn}, uniformly bounded on bounded subsets
I ×E, such that Gn(t, ξ) → G(t, ξ) in L2(H,E) uniformly on compact subsets
of I × E. And there exists a sequence of positive real numbers {βn}, possibly
βn → ∞, such that

∥ Gn(t, ξ) ∥2L2(H,E)≤ β2
n(1 + |ξ|2E), ξ ∈ E

∥ Gn(t, ξ)−Gn(t, η) ∥2L2(H,E)≤ β2
n|ξ − η|2E , ξ, η ∈ E.

(A4): (i) The jump kernel H, mapping I ×E ×Eδ to E, is continuous and
bounded on bounded subsets of I × E × Eδ.

(ii) There exists a sequence {Hn} uniformly bounded on bounded subsets of
I ×E for each v ∈ Eδ and that for Λ-almost all v ∈ Eδ, Hn(t, ξ, v) → H(t, ξ, v)
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uniformly on compact subsets of I × E. Further, there exists a sequence of
positive real numbers γn, possibly γn → ∞, such that∫

Eδ

|Hn(t, ξ, v)|2EΛ(dv) ≤ γ2n[1 + |ξ|2E ], (t, ξ) ∈ I × E,∫
Eδ

|Hn(t, ξ, v)−Hn(t, η, v)|2EΛ(dv) ≤ γ2n|ξ − η|2E , (t, ξ), (t, η) ∈ I × E.

Before we consider the question of existence of measure-valued solutions, we
present some necessary terminologies and preparatory results. Let ρ(A) denote
the resolvent set of the operator A and R(λ,A), λ ∈ ρ(A), the resolvent of A.
Based on the preceding assumptions we can prove the following Lemma.

Lemma 3.2. Consider the system described by the stochastic differential equa-
tion (1) and suppose the family of operators {A,F,G,H} satisfy the assump-
tions (A1), (A2)(ii), (A3)(ii), (A4)(ii) and let An = nAR(n,A), n ∈ ρ(A) ∩ N
(N = set of positive integers) denote the Yosida approximation of A. Then for
each F0-measurable initial state x0 ∈ L2(Ω, E) with x0,n = nR(n,A)x0, the
approximating system

dx = Anxdt+ Fn(t, x)dt+Gn(t, x)dW +

∫
Eδ

Hn(t, x, v)q(dv × dt), t ∈ I,

x(0) = x0,n(8)

has a unique mild solution xn ∈ Ba
∞(I, E) ≡ B∞(I, La

2(Ω, E)).

Proof. The proof is standard. We present a brief outline. Let {Sn(t), t ≥
0} denote the semigroup corresponding to the infinitesimal generator An. It
follows from semigroup theory that {Sn(t), t ∈ I} is uniformly continuous on
compact subsets of [0,∞) and that it converges in the strong operator topology
to {S(t), t ∈ I}. Using the semigroup Sn(t), t ∈ I, differential equation (8) can
be reformulated as an integral equation as follows,

x(t) = Sn(t)x0,n +

∫ t

0

Sn(t− s)Fn(s, x(s))ds

+

∫ t

0

Sn(t− s)Gn(s, x(s))dW (s)

+

∫ t

0

∫
Eδ

Sn(t− s)Hn(s, x(s), v)q(dv × ds), t ∈ I.(9)

The solution of this equation (if one exists) is called the mild solution of equa-
tion (8). Introducing the (nonlinear) operator Γ as
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(Γx)(t) ≡ Sn(t)x0,n +

∫ t

0

Sn(t− s)Fn(s, x(s))ds

+

∫ t

0

Sn(t− s)Gn(s, x(s))dW (s)

+

∫ t

0

∫
Eδ

Sn(t− s)Hn(s, x(s), v)q(dv × ds), t ∈ I,(10)

the integral equation (9) can be restated as a fixed point problem x = Γx. By
virtue of the growth properties of the approximating set of operators {Fn, Gn,
Hn} and the bound of the semigroup S(t), t ∈ I, as stated in the assump-
tions (A1), (A2)(ii), A(3)(ii) and (A4)(ii), one can easily verify that Γ maps
Ba

∞(I, E) into itself. Thus it suffices to verify the existence of a fixed point
of the operator Γ in Ba

∞(I, E). Using the Lipschitz properties as stated in the
above assumptions, one can verify the existence of an integer m such that the
m-th iterate of Γ denoted by Γm is a contraction. Hence x = Γmx has a unique
solution xn ∈ Ba

∞(I, E) with xn(0) = x0,n. Then it follows readily that xn is
also the unique fixed point of Γ. This completes our brief outline. □

We are now prepared to consider the question of existence of measure valued
solutions of equation (1). Our main result of this section is presented below.

Theorem 3.3. Consider the system (1) and let the operators {A,F,G,H}
satisfy the assumptions (A1), (A2), (A3), (A4). Then for every initial state x0
having the probability law µ0 ∈ Prba, there exists a µ ∈Mw

∞(I×Ω,Prba(E
+)) ⊂

Lw
∞(I × Ω,Mrba(E

+)) satisfying the identity (7).

Proof. By virtue of Lemma 3.2, the approximating system (8) has a unique
solution xn ∈ Ba

∞(I, E). Consider the sequence of measure valued random pro-
cesses {δxn(t)(dξ) ≡ µn

t (dξ), t ∈ I} defined by the sequence of Dirac measures
along the path process {xn}. Let φ ∈ D(A)∩D(B) ⊂ Φ having compact support
in E, and for each n ∈ N ∩ ρ(A), consider the random process φ(xn(t)), t ∈ I.
Then using the Ito-differential rule one can verify that

dφ(xn(t))

= (Anφ)(t, xn(t))dt+ (Bnφ)(t, xn(t))dt

+ ⟨(C1,nφ)(t, xn(t)), dW (t)⟩H +

∫
Eδ

(C2,nφ)(t, xn(t))(v)q(dv × dt)(11)

where the operators {An,Bn, C1,n, C2,n} are the approximations of the operators
{A,B, C1, C2} as described below. The operator An is obtained from the expres-
sion (3) for A by replacing the pair {G,H} with the corresponding approximat-
ing pair {Gn,Hn}. The operator Bn is obtained from the expression (4) for B
by replacing the pair {A,F} with the approximating pair {An, Fn}. Similarly,
the operators {C1,n, C2,n} are given by the expressions (5) and (6) respectively
with the pair {G,H} replaced by the pair {Gn,Hn}. For any ν ∈ Mrba(E

+)
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and ψ ∈ BC(E+), we use the notation ν(ψ) ≡
∫
E+ ψ(ξ)ν(dξ). It follows from

this representation that equation (11) is equivalent to the following identity,

µn
t (φ)

= µ0,n(φ) +

∫ t

0

µn
s (Anφ)ds+

∫ t

0

µn
s (Bnφ)ds

+

∫ t

0

⟨µn
s (C1,nφ), dW (s)⟩H +

∫ t

0

∫
Eδ

µn
s (C2,nφ)(v)q(dv × ds), t ∈ I.(12)

Considering the sequence of measure valued random processes {µn} as defined
above, we note that for any ϕ ∈ L1(I × Ω, BC(E+)) the functional

ℓn(ϕ) ≡
∫
I×Ω×E+

ϕ(t, ω, ξ)µn
t,w(dξ)dtdP = E

∫
I×E+

ϕ(t, ξ)µn
t (dξ)dt

is well defined and that

|ℓn(ϕ)| ≤ E
∫
I

∥ ϕ ∥BC(E+) dt =∥ ϕ ∥L1(I×Ω,BC(E+)) for all n ∈ N.

Hence the sequence {ℓn} is contained in the unit ball of the space of continuous
linear functionals on L1(I × Ω, BC(E+)) denoted by (L1(I × Ω, BC(E+))∗.
Thus it follows from the characterization of continuous linear functionals on
L1(I × Ω, BC(E+)) that there exists a µ ∈ Mw

∞(I × Ω,Prba(E
+)) ⊂ Lw

∞(I ×
Ω,Mrba(E

+)) such that, along a generalized subsequence (relabeled as the
original sequence),

(13) µn w∗

−→ µ in Mw
∞(I × Ω,Prba(E

+)) ⊂ Lw
∞(I × Ω,Mrba(E

+)).

We prove that µ satisfies equation (7). Considering the first term on the right-
hand side of equation (12), note that the sequence of operators nR(n,A) con-
verges in the strong operator topology to the identity operator in E. Hence for
any bounded continuous function φ, the sequence φ(x0,n) converges to φ(x0)

in probability. Thus µ0,n
w∗

−→ µ0 ∈ Prba(E
+) as n → ∞ in the sense that

µ0,n(φ) −→ µ0(φ) for each φ ∈ BC(E+). Next, we consider the second term
of equation (12) and recall the expression (3) for the operator A and note that
for each n ∈ N ∩ ρ(A) the operator An is given by

(Anφ)(t, ξ)

≡ (1/2)Tr(G∗
n(t, ξ)(D

2φ(ξ))Gn(t, ξ))

+ (1/2)

∫
Eδ

⟨(D2φ(ξ))Hn(t, ξ, v),Hn(t, ξ, v)⟩EΛ(dv), (t, ξ) ∈ I × E,(14)

for any φ ∈ D(A) ∩ D(B) having compact support. By virtue of assumptions
(A3)(i) and the first part of (A3)(ii), the sequence Gn converges to G in the
topology of L2(H,E) uniformly on compact subsets of I × E and it is also
uniformly bounded on bounded sets. Thus the first component is bounded as
an element of L1(I,BC(E

+)) ⊂ L1(I × Ω, BC(E+)). Similarly, by virtue of
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assumptions (A4)(i) and the first part of (A4)(ii), the sequence Hn converges
to H uniformly on compact subsets of I × E. Thus the second component is
also bounded as an element of L1(I,BC(E

+)) ⊂ L1(I ×Ω, BC(E+)). Hence it
follows from Lebesgue bounded convergence theorem

(15) Anφ
s−→ Aφ in L1(I,BC(E

+)) ⊂ L1(I × Ω, BC(E+)).

Next, we consider the third term of equation (12) and recall the expression (4)
for the operator B and note that for each φ ∈ D(A) ∩ D(B) and n ∈ N ∩ ρ(A)
the operator Bn is given by

(Bnφ)(t, ξ) ≡ ⟨A∗
nDφ(ξ), ξ⟩+ ⟨Dφ(ξ), Fn(t, ξ)⟩E , (t, ξ) ∈ I × E.

Since Dφ ∈ D(A∗) and A∗
n converges to A∗ in the strong operator topology on

its domain and Fn converges to F uniformly on compact subsets of I ×E and
φ has compact support, we conclude that Bnφ is bounded on I × E and since
I is a finite interval it belongs to L1(I,BC(E

+)) ⊂ L1(I ×Ω, BC(E+)). Again
it follows from Lebesgue bounded convergence theorem that

(16) Bnφ
s−→ Bφ in L1(I × Ω, BC(E+)).

Next, we consider the fourth and fifth terms of equation (12) and recall the
expression (5) and (6) giving the operators C1 and C2 and note that for each
φ ∈ D(A) ∩ D(B) having compact support and n ∈ N ∩ ρ(A), the operators
C1,n and C2,n are given by

(C1,nφ)(t, ξ) ≡ G∗
n(t, ξ)Dφ(ξ), (C1,nφ) ∈ BC(I × E,H) and

(C2,nφ)(t, ξ)(·) ≡ ⟨Dφ(ξ),Hn(t, ξ, ·)⟩E , (C2,nφ)(·) ∈ BC(I × E,Hδ).

Since φ has compact support and Gn converges to G uniformly on compact sets,
it is clear that (C1,nφ) converges to (C1φ) strongly in the Hilbert space H on
the set I ×E. Following similar argument, we conclude that (C2,nφ) converges
to (C2φ) strongly in the Hilbert space L2(Eδ,Λ) ≡ Hδ on the set I × E. Note
that the sum of the last two terms on the righthand side of equation (12) is an
Ft-martingale given by the expression

mn
t ≡

∫ t

0

⟨µn
s (C1,nφ), dW (s)⟩H

+

∫ t

0

∫
Eδ

µn
s (C2,nφ)(v)q(dv × ds), t ∈ I.(17)

Let z be an F-measurable random variable in L2(Ω). Without loss of generality
we may assume that it has zero mean. Then the conditional expectation of z
given by zt ≡ E{z|Ft} is an Ft-martingale (with zero mean) and it follows from
martingale representation theory that there exists a pair η ∈ La

2(I,H), β ∈
La
2(I,Hδ) = La

2(I × Eδ, dt× Λ(dv)) such that

(18) zt =

∫ t

0

⟨η(s), dW (s)⟩+
∫ t

0

∫
Eδ

β(s, v)q(dv × ds), t ∈ I.
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Computing the scalar product of the martingales given by the expressions (17)
and (18) and using Fubini’s theorem we obtain

E{z mn
t } = E{zt mn

t } = E
∫ t

0

µn
s (⟨η(s), G∗

n(s, ξ)Dφ(ξ)⟩H)ds

+ E
∫ t

0

µn
s

(∫
Eδ

β(s, v)⟨Dφ(ξ),Hn(s, ξ, v)⟩EΛ(dv)
)
ds, t ∈ I.(19)

Since φ has compact support in E and η ∈ La
2(I,H), β ∈ La

2(I,Hδ), it follows
from the properties of the sequence Gn,Hn as stated in (A3) and (A4) that

⟨η,G∗
nDφ⟩H ∈ L1(I × Ω, BC(E+))

and ∫
Eδ

β(·, v)⟨Dφ(ξ),Hn(·, ξ, v)⟩EΛ(dv) ∈ L1(I × Ω, BC(E+)).

Further, Gn converges to G uniformly on compact subsets of I × E, and Hn

converges to H on compact subsets of I × E for almost all v ∈ Eδ, and they
are uniformly bounded on bounded sets. Hence it follows from dominated
convergence theorem that

⟨η,G∗
nDφ⟩H

s−→ ⟨η,G∗Dφ⟩H in L1(I × Ω, BC(E+)) and(20) ∫
Eδ

β(·, v)⟨Dφ(·),Hn(·, ·, v)⟩EΛ(dv)(21)

s−→
∫
Eδ

β(·, v)⟨Dφ(·),H(·, ·, v)⟩EΛ(dv) in L1(I × Ω, BC(E+)).

Thus it follows from weak star convergence of µn to µ and the strong conver-
gence of the integrands as seen in the expressions (20) and (21) that

lim
n→∞

E{z mn
t } = lim

n→∞
E{zt mn

t }

= E
∫ t

0

µs(⟨η(s), G∗(s, ·)Dφ(·)⟩H)ds

+ E
∫ t

0

µs

(∫
Eδ

β(s, v)⟨Dφ(·),H(s, ·, v)⟩EΛ(dv)
)
ds, t ∈ I.(22)

Reversing the steps leading to the above expression, we obtain

lim
n→∞

E{z mn
t } = E{z mt} = E

{
z

∫ t

0

⟨µs(C1φ)), dW (s)⟩H
}

+ E
{
z

∫ t

0

∫
Eδ

µs(C2φ)(v)q(dv × ds)
}
.(23)

Now multiplying the expression (12) on either side by z ∈ L2(Ω) and recalling

that µ0,n
w∗

−→ µ0 in Prba(E
+) and applying the expectation operation and then
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letting n → ∞ and using (13), (15) (16) and (23) we arrive at the following
expression

E{zµt(φ)} = E{zµ0(φ)}+ E{z
∫ t

0

µs(Aφ)ds}+ E{z
∫ t

0

µs(Bφ)ds}

+ E{z
∫ t

0

⟨µs(C1φ), dW (s)⟩H}(24)

+ E{z
∫ t

0

∫
Eδ

µs(C2φ)(v)q(dv × ds)}, t ∈ I.

Since this identity holds for every z ∈ L2(Ω), we conclude that, for every
φ ∈ D(A) ∩D(B) having compact support in E,

µt(φ) = µ0(φ) +

∫ t

0

µs(Aφ)ds+
∫ t

0

µs(Bφ)ds+
∫ t

0

⟨µs(C1φ), dW (s)⟩H

+

∫ t

0

∫
Eδ

µs(C2φ)(v)q(dv × ds), for all t ∈ I, P − a.s.(25)

This is precisely the identity (7) proving that µ ∈ Mw
∞(I × Ω,Prba(E

+)) ⊂
Lw
∞(I×Ω,Mrba(E

+)) is a measure valued solution of equation (1) in the sense
of Definition 3.1. This completes the proof. □

Remark 3.4. (Extension) In this paper we have used the assumptions on the
vector fields {F,G,H} to be continuous and bounded on bounded sets of I×E.
Following similar technique as in [5], the results of this paper can be extended
further to admit measurable vector fields {F,G,H} under the assumption that
they are bounded on bounded sets.

4. Partially observed optimal state feedback control

We consider the following partially observed control system

dx = Axdt+ F (t, x)dt+K(t,Πx)dt+G(t, x)dW,

+

∫
Eδ

H(t, x, v)q(dv × dt), t ∈ I = [0, T ], x(0) = x0,(26)

where Π : E −→ E0 ⊂ E is a projection mapping E to a closed subspace E0 of E
representing the observable subspace. The functionK is a continuous map from
I×E0 to E and bounded on bounded sets. HereK is the partially observed state
feedback control law from the class of functions as described below. Control
theory for infinite dimensional (deterministic) systems on Banach spaces driven
by vector measures is well known as seen in [9] and the references therein. Here,
we consider stochastic systems driven by Brownian motion with values in H
and scaler valued Lev́y measures on the Hilbert space Eδ.

Admissible feedback control laws: Consider the Hilbert space E furnished
with the weak topology turning it into a locally compact Hausdorff topological
space. Let F(I × E0, E) ≡ EI×E0 denote the space of continuous functions



MEASURE-VALUED SOLUTIONS FOR SDES ON HILBERT SPACES 1047

mapping I × E0 to E endowed with the Tychonoff product topology. For any
pair of positive numbers {a, b}, consider the set Ua,b ⊂ F(I ×E0, E) satisfying
the following properties: For all K ∈ Ua,b,

(a1) : |K(t, 0)|E ≤ a, ∀ t ∈ I,

(a2) : |K(t, η1)−K(t, η2)|E ≤ b|η1 − η2|E0
, ∀ η1, η2 ∈ E0, and t ∈ I.

For any pair (t, η) ∈ I ×E0, let Πt,η denote the projection map (or evaluation
map) as defined below,

Πt,η(Ua,b) ≡ {K(t, η),K ∈ Ua,b} ⊂ E.

It is easy to verify that the set Ua,b is point wise closed in the sense that the
point wise limit of any sequence from Ua,b belongs to Ua,b, and the projection
Πt,η(Ua,b) has compact closure in E (with respect to it’s weak topology). Thus
the set Ua,b is compact in the point wise topology τp [20, Theorem 42.3].

Here we consider some interesting control problems. The objective functional
is given by an expression of the form

(27) J(K) ≡ E
∫
I×E

L(t, ω, ξ)µK
t,ω(dξ)dt,

where L : I × Ω × E −→ R is a nonnegative Borel measurable map and the
process µK ∈ Mw

∞(I × Ω,Prba(E
+)) with µK

0 = µ0, is the measure-valued
solution of the feedback control system (26) in the sense that, for every φ ∈
D(A) ∩ D(B) having compact support, µK satisfies the following equation,

µt(φ) = µ0(φ) +

∫ t

0

µs(Aφ)ds

+

∫ t

0

µs(Bφ)ds+
∫ t

0

µs(Kφ)ds+
∫ t

0

⟨µs(C1φ), dW (s)⟩H

+

∫ t

0

∫
Eδ

µs(C2φ)(v)q(dv × ds), t ∈ I, P.a.s,(28)

where the operator K is determined by an element K ∈ Ua,b and it is given by

Kφ ≡ {(Kφ)(t, ξ)
≡ ⟨Dφ(ξ),K(t,Πξ)⟩E , (t, ξ) ∈ I × E}, φ ∈ D(A) ∩ D(B).(29)

The problem is to find a control law in Ua,b that extremizes (minimizes or
maximizes) the functional (27).

For existence of optimal feedback controls, we need the following result on
continuity of the control to solution map as presented in the following theorem.

Theorem 4.1. Consider the system given by equation (26) and suppose the
operators {A,F,G,H} satisfy the assumptions of Theorem 3.3. Then, for each
K ∈ Ua,b, equation (26) has a measure solution µK ∈Mw

∞(I ×Ω,Prba(E
+)) in

the sense that it satisfies the identity (28). Further, it is continuously dependent
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on the control law in the sense that as Kn
τp−→ Ko in Ua,b, µ

Kn
w∗

−→ µKo in
Mw

∞(I × Ω,Prba(E
+)) ⊂ Lw

∞(I × Ω,Mrba(E
+)).

Proof. It follows from the properties of the admissible set Ua,b that every el-
ement K ∈ Ua,b satisfies the assumption (A2) of Theorem 3.3. Thus the op-
erators {A,F,K,G,H} satisfy all the assumptions of Theorem 3.3 and hence
it follows from this theorem that equation (26) has a measure valued solu-
tion µK ∈ Mw

∞(I × Ω,Prba(E
+)) in the sense that µK satisfies the identity

(28). To prove continuity, let {Kn} ∈ Ua,b and suppose Kn
τp−→ Ko and let

{µn, µo} ⊂ Mw
∞(I × Ω,Prba(E

+)) denote the corresponding solutions of equa-
tion (28) respectively. We must verify that (along a subsequence if necessary)

µn w∗

−→ µo. Since the set Mw
∞(I × Ω,Prba(E

+)) is a closed bounded subset of
Lw
∞(I×Ω,Mrba(E

+)), it follows from Alaoglu’s theorem that it is w∗ compact

and hence there exists a µ∗ ∈ Mw
∞(I × Ω,Prba(E

+)) such that µn w∗

−→ µ∗. We
show that µ∗ = µo. Subtracting term by term the expression given by equa-
tion (28) corresponding to the control Kn with the solution µn, from the same
expression corresponding to the control Ko with solution µo, we have

(µo
t − µn

t )(φ) =

∫ t

0

(µo
s − µn

s )(Aφ)ds+
∫ t

0

(µo
s − µn

s )(Bφ)ds

+

∫ t

0

(µo
s − µn

s )(Koφ)ds+

∫ t

0

µn
s ((Ko −Kn)φ)ds

+

∫ t

0

⟨(µo
s − µn

s )(C1φ), dW (s)⟩H

+

∫ t

0

∫
Eδ

(µo
s − µn

s )(C2φ)(v)q(dv × ds), for all t ∈ I, P − a.s.(30)

Consider the fourth term on the righthand side of the above equation given by

(31)

∫ t

0

µn
s ((Ko −Kn)φ)ds, t ∈ I, n ∈ N.

Since Kn
τp−→ Ko in Ua,b and φ ∈ D(A) ∩ D(B) having compact support, we

note that

(Ko −Kn)φ ∈ L1(I,BC(E
+)) ⊂ L1(I × Ω, BC(E+))

and that it converges point wise to zero. Since φ has compact support it follows
from the properties of the set Ua,b that it is also bounded from above and so it
follows from Lebesgue bounded convergence theorem that it converges to zero

in L1(I×Ω, BC(E+)). On the other hand µn w∗

−→ µ∗ inMw
∞(I×Ω,Prba(E

+)) ⊂
Lw
∞(I × Ω,Mrba(E

+)). Hence it is clear that

(32) lim
n→∞

E
∫ t

0

µn
s ((Ko −Kn)φ)ds = 0 for each t ∈ I.
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Define ν = µo−µ∗ and note that ν ∈ Lw
∞(I ×Ω,Mrba(E

+)). Using these facts
and the expression (30) and following the same technique as in the proof of
Theorem 3.3, and letting n→ ∞ we obtain

νt(φ) =

∫ t

0

νs(Aφ)ds+
∫ t

0

νs(Bφ)ds+
∫ t

0

νs(Koφ)ds

+

∫ t

0

⟨νs(C1φ), dW (s)⟩H +

∫ t

0

∫
Eδ

νs(C2φ)(v)q(dv × ds), t ∈ I, P.a.s.(33)

This is a linear homogeneous stochastic functional equation of Volterra type.
Hence ν = 0 proving that µ∗ = µo. Thus the control to solution map is contin-
uous in the sense as stated in the theorem. □

We are now prepared to consider the following control problem. Let

Γ(t, ω), (t, ω) ∈ I × Ω,

be a measurable multi function with values in the class of nonempty closed
bounded subsets of E, denoted by cb(E), which is furnished with the Hausdorff
metric topology. Problem is to find a control law that maximizes the chance
(probability) of following the target set Γ as closely as possible. The appropriate
objective functional for this problem is given by

(34) J̃(K) = E
∫
I

µK
t,ω(Γ(t, ω))dt.

In other words, the objective is to follow the target set described by the
nonempty measurable set valued function Γ as closely as possible. This can be
realized by maximizing the concentration of mass of the probability measure
on the target set. We prove the following theorem.

Theorem 4.2. Consider the control system given by equation (28) (or equiv-
alently the equation (26)) with the set of admissible controls Ua,b and the ob-
jective functional given by (34). Suppose the assumptions of Theorem 4.1 hold
and that Γ is a nonempty measurable multifunction defined on I × Ω and tak-
ing values from cb(E). Then there exists an optimal control maximizing the
functional (34).

Proof. Since the set Ua,b is compact with respect to the topology τp, it suffices to
verify that the functional K → J(K) is upper semicontinuous in this topology.
Let us note that the objective functional (34) is equivalent to the following cost
functional

(35) J(K) = E
∫
I

µK
t,ω(E

+ \ Γ(t, ω))dt.

In other words, maximizing the functional (34) is equivalent to minimizing
the functional (35). We prove that this functional is lower semicontinuous. Let

{Kn} ⊂ Ua,b and supposeKn
τp−→ Ko and let {µn, µo} denote the corresponding

solutions of equation (28) (equivalently measure solution of equation (26)). By
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Theorem 4.1, µn w∗

−→ µo in Mw
∞(I × Ω,Prba(E

+)) ⊂ Lw
∞(I × Ω,Mrba(E

+)).
Since the set E+ \ Γ(t, ω) is open for all (t, ω) ∈ I × Ω, it is not difficult to
verify [17, Theorem 6.1, p.40] that

µo
t,ω(E

+ \ Γ(t, ω)) ≤ lim inf
n→∞

µn
t,ω(E

+ \ Γ(t, ω)), for a.a (t, ω) ∈ I × Ω.

Integrating the above expression, we obtain

E
∫
I

µo
t,ω(E

+ \ Γ(t, ω))dt ≤ E
∫
I

lim inf
n→∞

µn
t,ω(E

+ \ Γ(t, ω))dt

≤ lim inf
n→∞

E
∫
I

µn
t,ω(E

+ \ Γ(t, ω))dt.(36)

Hence we conclude that J(Ko) ≤ lim infn→∞ J(Kn). This shows that the map
K → J(K) is lower semicontinuous with respect to the τp topology. Since Ua,b

is τp compact, it follows from lower semi continuity of J that it attains its
minimum on it. This proves existence of an optimal control. □

Another problem of significant interest is to find a feedback control that
minimizes the distance between a desired measure valued process and the mea-
sure valued process generated by the system (28) corresponding to feedback
controls. This can be formulated using the well known Lévy-Prokhorov met-
ric on the space of probability measures. Let Prba(E

+) denote the space of
probability measures on the Borel sets Bor.(E+). Let us recall the definition
of the Lévy-Prokhorov metric. For any two elements µ, ν ∈ Prba(E

+), the
Lévy-Prokhorov distance is given by

dP (µ, ν)

= inf{ε > 0|µ(Q) ≤ ν(Qε) + ε; ν(Q) ≤ µ(Qε) + ε, ∀ Q ∈ Bor.(E+)},(37)

where Qε is the ε(> 0) neighbourhood of the set Q. We assume that E is a
separable Hilbert space and hence a complete separable metric space. Under
this assumption, (Prba(E

+), dP ) is also a complete metric space. It is well
known that convergence of measures in the Lévy-Prokhorov metric is equivalent
to weak star convergence of measures. For details on this topic see [10,13,18,21].

Now we are prepared to state the problem. Let ν ∈Mw
∞(I×Ω,Prba(E

+)) ⊂
Lw
∞(I ×Ω,Mrba(E

+)) denote the target, a measure valued process, and µK ∈
Mw

∞(I × Ω,Prba(E
+)) denote the measure valued process representing the so-

lution of equation (28) corresponding to the control law K ∈ Ua,b. The cost
functional for the problem as stated above is given by

(38) J(K) ≡ E
∫
I

dP (µ
K
t , νt)dt =

∫
Ω

∫
I

dP (µ
K
t,ω, νt,ω)dtdP.

The objective is to prove the existence of a control law K ∈ Ua,b that minimizes
the above cost functional.
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Theorem 4.3. Consider equation (28) (representing the system (26)) with the
set of admissible controls Ua,b and the cost functional given by the expression
(38). Suppose the assumptions of Theorem 4.1 hold. Then there exists an
optimal feedback control Ko ∈ Ua,b minimizing the functional (38).

Proof. We prove that J is continuous in the τp topology. Let {Kn} ⊂ Ua,b and

suppose Kn
τp−→ Ko ∈ Ua,b and let{µn, µo} ⊂ Mw

∞(I × Ω,Prba(E
+)) denote

the corresponding solutions of equation (28). Clearly, it follows from Theorem

4.1 that µn w∗

−→ µo. Since µn converges to µo in the weak star topology of
Mw

∞(I × Ω,Prba(E
+)) inherited from Lw

∞(I × Ω,Mrba(E
+)), there exists a

subsequence {µnk} of the sequence {µn} such that µnk
t,ω

w∗

−→ µo
t,ω in the relative

weak star topology on the space Prba(E
+) for almost all (t, ω) ∈ I × Ω. As

stated above, weak star convergence of probability measures is equivalent to
convergence in the Lévy-Prokhorov metric dP . Hence dP (µ

nk
t,ω, µ

o
t,ω) → 0 for

almost all (t, ω) ∈ I × Ω. Recall that dP (µ1, µ2) ≤ 2 for all µ1, µ2 ∈ Prba(E
+).

Thus it follows from Lebesgue bounded convergence theorem that

(39) lim
k→∞

∫
I×Ω

dP (µ
nk
t,ω, µ

o
t,ω) dtdP = 0.

Using this result we prove that J is continuous with respect to τp topology on

Ua,b. Let Kn
τp−→ Ko and µKn

w∗−→ µKo . Clearly for all n ∈ N,

J(Ko) = E
∫
I

dP (µ
Ko
t,ω, νt,ω)dt ≤ E

∫
I

dP (µ
Ko
t,ω, µ

Kn
t,ω )dt+ E

∫
I

dP (µ
Kn
t,ω , νt,ω)dt

and hence by virtue of (39), we conclude that

(40) J(Ko) ≤ lim
n→∞

J(Kn).

Similarly, for all n ∈ N, we have

J(Kn) = E
∫
I

dP (µ
Kn
t,ω , νt,ω)dt ≤ E

∫
I

dP (µ
Kn
t,ω , µ

Ko
t,ω)dt+ E

∫
dP (µ

Ko
t,ω, νt,ω)dt,

and we conclude from this inequality that

(41) lim
n→∞

J(Kn) ≤ J(Ko).

Hence it follows from the inequalities (40) and (41) that J(Kn) → J(Ko) as
n→ ∞ proving continuity of the functional J in the τp topology on Ua,b. Since
Ua,b is compact in the τp topology, J attains both its minimum (and maximum).
Hence an optimal feedback control exists. □

Next,we consider an exit time problem. Consider the initial state, a measure
µo ∈ Prba(E

+) having support given by a closed bounded set C ⊂ E. For any
given (finite) positive number r, let Br ⊂ E denote the closed ball of radius r
centered at the origin. Clearly, we can choose r > 0, sufficiently large, so that
the set C is contained in the interior of Br. For any control law K ∈ Ua,b, let
µK ∈Mw

∞(I ×Ω,Prba(E
+)) denote the measure valued solution of the control
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system (26) or equivalently the solution of equation (28). For any ε ∈ (0, 1) as
small as desired, the set {t ∈ I : µK

t,ω(Br) ≤ 1− ε} denotes the set of exit times
(time instants at which the support of µt has nonempty intersection with the
set (E \ Br)). Then the first exit time corresponding to the control law K is
given by

T (K) ≡ inf{t ∈ I : µK
t,ω(Br) ≤ 1− ε}.

This is an F-measurable random variable possibly taking values in I ≡ [0, T ].
In case the underlying set is empty, we set T (K) = 0. The problem is to find
a control from the admissible set Ua,b such that the expected value of the first
exit time is maximum. Hence, the objective functional is given by

(42) J(K) ≡ E{T (K)}
and the problem is to find a control law that maximizes it. We prove the
following result on existence of optimal control law.

Theorem 4.4. Consider the control system (28) corresponding to the control
law K ∈ Ua,b with the initial state µ0 having a nonempty closed bounded support
C ⊂ E, and the objective functional given by (42). Suppose the assumptions of
Theorem 4.1 hold. Then there exists a control law in Uab that maximizes the
functional J.

Proof. We prove that the functional K −→ J(K) is upper semicontinuous on
Ua,b. Consider the sequence {Kn} ∈ Ua,b and suppose Kn converges to Ko ∈
Ua,b in the τp topology. Let {µn} and µo denote the corresponding solutions

of equation (28). By virtue of Theorem 4.1, we conclude that µn w∗

−→ µo in
Mw

∞(I × Ω,Prba(E
+)). Since Br is a closed set, it follows from a well known

result [17, Theorem 6.1, p.40] that limµn
t (Br) ≤ µo

t (Br) for all t ∈ I and
P -almost all ω ∈ Ω. With little reflection one can verify that

{t ∈ I : µo
t (Br) ≤ 1− ε} ⊂ {t ∈ I : limµn

t (Br) ≤ 1− ε}.
Clearly, it follows from the above inclusion that

(43) inf{t ∈ I : limµn
t (Br) ≤ 1− ε} ≤ inf{t ∈ I : µo

t (Br) ≤ 1− ε}.
Hence for any δ ∈ (0, ε), there exists an integer nδ such that µn

t (Br) < 1−ε+δ
for all n > nδ. Therefore,

{t ≥ 0 : µn
t (Br) ≤ 1− ε+ δ} ⊃ {t ≥ 0 : limµn

t (Br) ≤ 1− ε}
for all n > nδ. Thus for all n > nδ, we have

(44) inf{t ≥ 0 : µn
t (Br) ≤ 1− ε+ δ} ≤ inf{t ≥ 0 : limµn

t (Br) ≤ 1− ε}.
It follows from the expressions (43) and (44) that, for every δ ∈ (0, ε) and
n > nδ, we have the following inequality

Tδ(Kn) ≡ inf{t ≥ 0 : µn
t (Br) ≤ 1− ε+ δ}

≤ inf{t ≥ 0 : µo
t (Br) ≤ 1− ε} ≡ T (Ko).(45)
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Hence for every δ ∈ (0, ε), we have lim Tδ(Kn) ≤ T (Ko) P -a.s. This implies
that

(46) limE{Tδ(Kn)} ≤ E{lim Tδ(Kn)} ≤ E{T (Ko)}.
Since this holds for every δ ∈ (0, ε), we conclude that limE{T (Kn)} ≤ E{T (Ko)},
and therefore

(47) lim J(Kn) ≤ J(Ko),

proving upper semicontinuity of J on Ua,b with respect to the τp topology.
Since Ua,b is compact in the τp topology, J attains it’s maximum on it. This
proves that an optimal feedback control exists. □

Remark 4.5. Here we have considered the questions of existence of optimal
feedback controls for several control problems. Using these results one can de-
velop necessary conditions of optimality whereby one can determine the optimal
control laws.

5. Range of vector measures and control

In this section we present some properties of the range of measures induced
by the solutions of the stochastic control system (26) or equivalently equation
(28). Recall, that corresponding to every feedback controlK ∈ Ua,b, there exists
a measure valued solution µK ∈Mw

∞(I×Ω,Prba(E
+)) ⊂ Lw

∞(I×Ω,Mrba(E
+)).

Let Σ+ denote the algebra of subsets of the set E+ and Σo ≡ σ(Σ+) the
sigma algebra generated by Σ+. Let B

o
1(E

+) denote the class of Σo measurable
nonnegative real valued functions defined on E+ with supremum norm not
exceeding one. For each (t, ω) ∈ I × Ω, and K ∈ Ua,b, let

(48) µK
t,ω(Σo) ≡ {µK

t,ω(Γ),Γ ∈ Σo}
denote the range of the measure corresponding to the associated solution of
equation (28). It is well known that any vector measure µ can be decomposed
as the sum of two measures one of which is purely atomic and one non-atomic
giving µ = µ̂ + µ̊. First, we consider the non atomic component denoted by
µ̊ and later the measure-valued solution without decomposition. Since these
are countably additive probability measure valued processes, it follows from
the well known Lyapunov theorem [11, Corollary 5, p.264] on the range of non-
atomic countably additive vector measures taking values in a finite dimensional
space that, for each (t, ω) ∈ I×Ω, the set (range) µ̊K

t,ω(Σo) is a compact convex

subset of [0, 1] ⊂ R. Hence, letting L+
∞(I × Ω) denote the class of real valued

nonnegative essentially bounded measurable functions, the following set

(49) µ̊K(Σo) = {g ∈ L+
∞(I × Ω) : g(t, ω) ∈ µ̊K

t,ω(Σo) ∀ (t, ω) ∈ I × Ω}
is well defined. Let Z ≡ L1(I × Ω) with its dual given by Z∗ ≡ L∞(I × Ω)
and let B1(Z

∗) denote the closed unit ball in Z∗ (centered at the origin) with
B+

1 (Z∗) denoting its positive part. Clearly, µ̊K(Σo) ⊂ B+
1 (Z∗) ⊂ B1(Z

∗) and
that, for each K ∈ Ua,b, the set µ̊K(Σo) is a w∗-closed convex subset of Z∗.
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Thus, by Alaoglu’s theorem [14], it is a w∗ compact convex subset of Z∗ and it is
also contained in the compact set B+

1 (Z∗). Hence it follows from Krein-Milman
theorem [14] that it is the w∗ closed convex hull of its extreme points, that is,
µ̊K(Σo) = co∗(Ext.(µ̊K(Σo))). If (Ω,F , P ) is a separable probability space,
for example, Ω is a Polish space (separable completely metrizable topological
space) and F is the class of Borel subsets of Ω then L1(I×Ω) ≡ Z is a separable
Banach space. (In general a measure space is separable if and only if the sigma
algebra is countably generated). Thus the closed unit ball B1(Z

∗) of the space
Z∗ is metrizable with the metric given by

(50) d(z∗1 , z
∗
2) =

∑
n≥1

(1/2n)
|(z∗1(zn)− z∗2(zn))|

1 + |(z∗1(zn)− z∗2(zn))|
, for z∗1 , z

∗
2 ∈ B1(Z

∗)

where {zn} ⊂ Z is a countable set dense in Z. Thus we have a compact metric
space (B1(Z

∗), d).

Consider the family of sets R̊ ≡ {µ̊K(Σo),K ∈ Ua,b} where each element is
the range of the non-atomic component of the measure valued process induced
by the system (28) corresponding to K ∈ Ua,b. It is a family of nonempty
compact convex sets contained in the compact set B+

1 (Z∗) of the compact
metric space (B1(Z

∗), d). Using the metric d as defined above, we can introduce

the Hausdorff metric on R̊ as follows

DH(C1, C2) = max{sup{d(C1, η), η ∈ C2}, sup{d(ξ, C2), ξ ∈ C1}}

for C1, C2 ∈ R̊. It follows from Theorem 4.1, that as Kn
τp−→ Ko, µ

Kn
w∗

−→
µKo . Thus the corresponding atomic and non-atomic components {µ̂Kn , µ̊Kn}
converge in the w∗-sense to the respective atomic and non-atomic components
{µ̂Ko , µ̊Ko} as well. Then it follows from multi-valued analysis [16, Theorem
7.2.1, p.684] that there exists a subsequence {µ̊Knm} of the sequence {µ̊Kn}
such that

DH(µ̊Knm (Σo), µ̊
Ko(Σo)) −→ 0, as m→ ∞

with µ̊Ko(Σo) ∈ R̊.

One interesting control problem is to find a feedback control lawKo from the
admissible class Ua,b corresponding to which the expanse of the range µ̊Ko(Σo) is
maximum(or minimum). We may use the diameter as the measure of expanse of

any element of the family R̊. Using the metric d as defined above, the diameter
of any set C ∈ R̊ is given by

Dia(C) ≡ sup{d(x, y), x, y ∈ C}.

For the control problem, we may choose the objective functional as

(51) J(K) ≡ Dia(µ̊K(Σo)), for K ∈ Ua,b.

The problem is to find a control law K ∈ Ua,b that maximizes(or minimizes)
this functional.
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Theorem 5.1. Consider the system (28) (equivalently the system (26)) with
the set of admissible controls Ua,b and the objective functional given by the
expression (51). Suppose the assumptions of Theorem 4.1 hold and that the
probability space (Ω,F , P ) is separable. Then there exists an optimal feedback
control Ko ∈ Ua,b maximizing (minimizing) the functional (51).

Proof. We prove that the functional J given by the expression (51) is continuous
with respect to the topology τp on Ua,b. Let {Kn} be any sequence from Ua,b and

suppose Kn
τp−→ Ko and let {µ̊Kn(Σo)} and µ̊Ko(Σo) denote the corresponding

elements from the set R̊.We know that these are compact convex sets and that
they are continuous (with respect to the control laws) in the τp topology on

Ua,b and the Hausdorff metric topology on R̊ (as discussed above), leading to

DH(µ̊Kn(Σo), µ̊
Ko(Σo)) −→ 0, as n→ ∞.

For simplicity of notations, we let Γn ≡ µ̊Kn(Σo) and Γo ≡ µ̊Ko(Σo) and
introduce the following family of sets

Γ∗
n ≡ {(x, y) ∈ Γn : d(x, y) ≥ d(ξ, η), ∀ (ξ, η) ∈ Γn}, n ∈ N

and

Γ∗
o ≡ {(x, y) ∈ Γo : d(x, y) ≥ d(ξ, η), ∀ (ξ, η) ∈ Γo}.

Since the family of sets {Γn,Γo} are compact and the metric (function) d(·, ·) is
continuous, the family of sets {Γ∗

n,Γ
∗
o} are nonempty. These sets consist of pairs

of elements of Γn and Γo respectively that determine their respective diameters.
They are nonempty closed subsets of compact sets and hence compact. Since
DH(Γn,Γo) → 0, it is clear that DH(Γ∗

n,Γ
∗
0) → 0 also. In other words, every

pair (xn, yn) ∈ Γ∗
n converges to a pair (xo, yo) ∈ Γ∗

o in the sense that d(xn, yn) →
d(xo, yo). This follows from the fact that

|d(xn, yn)− d(xo, yo)| ≤ d(xn, xo) + d(yn, yo),

and hence, as n→ ∞, d(xn, yn) −→ d(xo, yo). Thus, as n→ ∞,

Dia(Γn) = Dia(Γ∗
n) −→ Dia(Γ∗

o) = Dia(Γo).

Hence we conclude that J(Kn) → J(Ko) as Kn
τπ−→ Ko. Since the set Ua,b

is compact in the τp topology and J is continuous with respect to the same
topology, we conclude that J attains its maximum (and minimum) on Ua,b.
This completes the proof. □

Remark 5.2. It is interesting to note that the end points of the line segments
that determine the diameter of a compact convex set are contained in the set
of its extreme points. This is justified by the facts that the sets {Γn} and
Γo are compact and convex and the function (x, y) −→ d(x, y) is convex and
continuous and hence it attains its maximum at the extreme points of the sets
{Γn} and Γo.
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Remark 5.3. Theorem 5.1 is based on the decomposition of a measure into
the sum of a non-atomic and an atomic component. The objective functional
given by the expression (51) uses only the non-atomic component for which
the Lyapunov theorem (on the range of vector measures) holds. However, the
objective is to find a control that maximizes the expanse (or size) of the range of
the measure-valued process itself determined by the solution of equation (28),
not its non-atomic component only. In the general case, Lyapunov theorem
does not hold. So, we revise and replace the objective functional (51) by the
following relaxed objective functional

(52) J̃(K) ≡ Dia(µ̃K(Σo)) for K ∈ Ua,b,

where

µ̃K(Σo) ≡ {g ∈ B+
1 (Z∗) : g(t, ω) ∈ co(µK

t,ω(Σo))∀(t, ω) ∈ I × Ω}.

This is a closed (convex) subset of the compact metric space (B1(Z
∗), d) and

hence compact (convex). This follows readily from the fact that

I × Ω ∋ (t, ω) −→ co(µK
t,ω(Σo))

is a measurable multi function with nonempty convex compact values in [0, 1].
So, it follows from the well known Kuratowski–Ryll-Nardzewski selection the-
orem [16, Theorem 2.1, p.154], that it has a nonempty set of measurable selec-
tions.

Hence, following similar steps as in Theorem 5.1, one can prove existence of
optimal feedback control maximizing (minimizing) the functional (52).
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